发电技术 ›› 2026, Vol. 47 ›› Issue (1): 122-132.DOI: 10.12096/j.2096-4528.pgt.260111
• 储能 • 上一篇
胡泽灵1, 郝俊红1, 巨陈治1, 马腾宇1, 窦真兰2, 李双江3
收稿日期:2025-02-07
修回日期:2025-03-25
出版日期:2026-02-28
发布日期:2026-02-12
通讯作者:
郝俊红
作者简介:基金资助:Zeling HU1, Junhong HAO1, Chenzhi JU1, Tengyu MA1, Zhenlan DOU2, Shuangjiang LI3
Received:2025-02-07
Revised:2025-03-25
Published:2026-02-28
Online:2026-02-12
Contact:
Junhong HAO
Supported by:摘要:
目的 为了有效提升压缩空气储能(compressed air energy storage,CAES)系统的储能特性和系统效率,对各部件的性能及其耦合特性进行了建模分析。 方法 针对CAES系统,应用标准热阻方法考虑换热部件的传递特性,结合储气装置与做功部件模型,构建传热、储气、做功耦合的完整热力学模型及能量、㶲分析模型,评价了压缩和膨胀过程中储(释)能质量流量比对系统性能的影响。揭示储气库最高储气压力与体积之间的关系对系统储能效率及储能密度的影响规律。 结果 随着储(释)能质量流量比的增加,压缩机的总能耗先降低后升高,膨胀机的输出功是先上升后降低,当储(释)能的质量比分别为1.2和1.3时,系统效率达到最高,为53.65%;另外,系统中首级压缩和膨胀机的㶲损最大,油-气换热器和压缩机的㶲损占系统总㶲损的69%。 结论 所建模型和研究结果对CAES运行策略具有一定的指导意义。
中图分类号:
胡泽灵, 郝俊红, 巨陈治, 马腾宇, 窦真兰, 李双江. 基于标准热阻法的压缩空气储能系统整体建模及能-㶲分析[J]. 发电技术, 2026, 47(1): 122-132.
Zeling HU, Junhong HAO, Chenzhi JU, Tengyu MA, Zhenlan DOU, Shuangjiang LI. Comprehensive Modeling and Energy-Exergy Analysis of Compressed Air Energy Storage Systems Based on Standard Thermal Resistance Method[J]. Power Generation Technology, 2026, 47(1): 122-132.
| 参数 | 取值 |
|---|---|
| 环境温度/K | 293 |
| 环境压力/MPa | 0.1 |
| 储气库体积/m3 | 310 000 |
| 储能压力/MPa | 4.2~6.3 |
| 储气流量/(kg/s) | 108 |
| 释气流量/(kg/s) | 264 |
表 1 系统设计基本参数
Tab. 1 Design basic parameters for system
| 参数 | 取值 |
|---|---|
| 环境温度/K | 293 |
| 环境压力/MPa | 0.1 |
| 储气库体积/m3 | 310 000 |
| 储能压力/MPa | 4.2~6.3 |
| 储气流量/(kg/s) | 108 |
| 释气流量/(kg/s) | 264 |
| 压缩段参数 | 取值 | 膨胀段参数 | 取值 |
|---|---|---|---|
| 压缩比 | 6.4、5.2、2.5 | 膨胀比 | 6.9、5.2 |
| 压缩机等熵效率 | 0.85 | 膨胀机等熵效率 | 0.90 |
| 流量/(kg/s) | 108 | 流量/(kg/s) | 264 |
| 热罐温度/K | 507、357 | 冷罐温度/K | 320 |
| 压缩总功率/MW | 62 | 膨胀机功率/MW | 93 |
表 2 压缩段和膨胀段设计点基本参数
Tab. 2 Basic parameters for design points of compression and expansion sections
| 压缩段参数 | 取值 | 膨胀段参数 | 取值 |
|---|---|---|---|
| 压缩比 | 6.4、5.2、2.5 | 膨胀比 | 6.9、5.2 |
| 压缩机等熵效率 | 0.85 | 膨胀机等熵效率 | 0.90 |
| 流量/(kg/s) | 108 | 流量/(kg/s) | 264 |
| 热罐温度/K | 507、357 | 冷罐温度/K | 320 |
| 压缩总功率/MW | 62 | 膨胀机功率/MW | 93 |
| 储能比 | 质量流量/(kg/s) | 储能时间/h | 最终温度/K | 单位耗功/(kJ/s) | 总功/(MW⋅h) |
|---|---|---|---|---|---|
| 0.7 | 75.6 | 18.37 | 350.44 | 43.47 | 798.37 |
| 0.8 | 86.4 | 16.06 | 350.6 | 49.68 | 797.61 |
| 0.9 | 97.2 | 14.26 | 350.73 | 55.89 | 796.88 |
| 1.0 | 108 | 12.83 | 350.80 | 62.10 | 796.92 |
| 1.1 | 118.8 | 11.66 | 350.93 | 68.31 | 796.59 |
| 1.2 | 129.6 | 10.68 | 350.99 | 74.52 | 795.89 |
| 1.3 | 140.4 | 9.86 | 351.07 | 80.73 | 795.99 |
表 3 不同储能空气流量下系统参数
Tab. 3 System parameters at different air flow rates for energy storage
| 储能比 | 质量流量/(kg/s) | 储能时间/h | 最终温度/K | 单位耗功/(kJ/s) | 总功/(MW⋅h) |
|---|---|---|---|---|---|
| 0.7 | 75.6 | 18.37 | 350.44 | 43.47 | 798.37 |
| 0.8 | 86.4 | 16.06 | 350.6 | 49.68 | 797.61 |
| 0.9 | 97.2 | 14.26 | 350.73 | 55.89 | 796.88 |
| 1.0 | 108 | 12.83 | 350.80 | 62.10 | 796.92 |
| 1.1 | 118.8 | 11.66 | 350.93 | 68.31 | 796.59 |
| 1.2 | 129.6 | 10.68 | 350.99 | 74.52 | 795.89 |
| 1.3 | 140.4 | 9.86 | 351.07 | 80.73 | 795.99 |
| 参数 | 取值 |
|---|---|
| 压力范围/MPa | 4.3~6.2 |
| 储气库体积/m3 | 31×104 |
| 储能时间/h | 9.86 |
| 释能时间/h | 3.55 |
表 4 2种工况下初始参数
Tab. 4 Initial parameters under two operating conditions
| 参数 | 取值 |
|---|---|
| 压力范围/MPa | 4.3~6.2 |
| 储气库体积/m3 | 31×104 |
| 储能时间/h | 9.86 |
| 释能时间/h | 3.55 |
最高压力/ MPa | 工况1 | 工况2 | ||
|---|---|---|---|---|
| 储气体积/m3 | 最终温度/K | 储气时间/h | 最终温度/K | |
| 5.8 | 388 800 | 347.31 | 7.86 | 347.31 |
| 6.0 | 345 000 | 349.66 | 8.87 | 349.68 |
| 6.2 | 310 000 | 351.89 | 9.86 | 351.89 |
| 6.4 | 282 850 | 353.90 | 10.81 | 353.90 |
| 6.6 | 29 250 | 355.89 | 11.79 | 355.88 |
| 6.8 | 239 290 | 357.78 | 12.77 | 357.78 |
| 7.0 | 222 090 | 359.59 | 13.77 | 359.59 |
表 5 工况1、工况2运行参数
Tab. 5 Operating parameters under condition 1 and condition 2
最高压力/ MPa | 工况1 | 工况2 | ||
|---|---|---|---|---|
| 储气体积/m3 | 最终温度/K | 储气时间/h | 最终温度/K | |
| 5.8 | 388 800 | 347.31 | 7.86 | 347.31 |
| 6.0 | 345 000 | 349.66 | 8.87 | 349.68 |
| 6.2 | 310 000 | 351.89 | 9.86 | 351.89 |
| 6.4 | 282 850 | 353.90 | 10.81 | 353.90 |
| 6.6 | 29 250 | 355.89 | 11.79 | 355.88 |
| 6.8 | 239 290 | 357.78 | 12.77 | 357.78 |
| 7.0 | 222 090 | 359.59 | 13.77 | 359.59 |
| 最高压力/MPa | 工况1 | 工况2 | ||
|---|---|---|---|---|
| 释能时间/h | 总功/ (MW⋅h) | 释能时间/h | 总功/ (MW⋅h) | |
| 5.8 | 3.48 | 420.85 | 2.79 | 335.59 |
| 6.0 | 3.52 | 424.95 | 3.16 | 381.93 |
| 6.2 | 3.55 | 428.54 | 3.57 | 428.44 |
| 6.4 | 3.59 | 433.71 | 3.93 | 475.31 |
| 6.6 | 3.62 | 437.03 | 4.33 | 522.63 |
| 6.8 | 3.64 | 440.05 | 4.72 | 570.01 |
| 7.0 | 3.66 | 442.50 | 5.11 | 617.72 |
表6 工况1、工况2下的释能时间和总功
Tab. 6 Energy release time and total work under condition 1 and condition 2
| 最高压力/MPa | 工况1 | 工况2 | ||
|---|---|---|---|---|
| 释能时间/h | 总功/ (MW⋅h) | 释能时间/h | 总功/ (MW⋅h) | |
| 5.8 | 3.48 | 420.85 | 2.79 | 335.59 |
| 6.0 | 3.52 | 424.95 | 3.16 | 381.93 |
| 6.2 | 3.55 | 428.54 | 3.57 | 428.44 |
| 6.4 | 3.59 | 433.71 | 3.93 | 475.31 |
| 6.6 | 3.62 | 437.03 | 4.33 | 522.63 |
| 6.8 | 3.64 | 440.05 | 4.72 | 570.01 |
| 7.0 | 3.66 | 442.50 | 5.11 | 617.72 |
| 最高压力/MPa | 工况1 | 工况2 | ||
|---|---|---|---|---|
储能密度/ (MW⋅h/m3) | 储能效率/% | 储能密度/ (MW⋅h/m3) | 储能效率/% | |
| 5.8 | 0.001 08 | 52.87 | 0.001 08 | 52.88 |
| 6.0 | 0.001 23 | 53.38 | 0.001 23 | 53.35 |
| 6.2 | 0.001 38 | 53.84 | 0.001 38 | 53.82 |
| 6.4 | 0.001 53 | 54.49 | 0.001 53 | 54.47 |
| 6.6 | 0.001 69 | 54.90 | 0.001 69 | 54.92 |
| 6.8 | 0.001 84 | 55.28 | 0.001 84 | 55.28 |
| 7.0 | 0.001 99 | 55.59 | 0.001 99 | 55.59 |
表7 工况1、工况2下的储能密度和储能效率
Tab. 7 Energy storage density and efficiency under condition 1 and condition 2
| 最高压力/MPa | 工况1 | 工况2 | ||
|---|---|---|---|---|
储能密度/ (MW⋅h/m3) | 储能效率/% | 储能密度/ (MW⋅h/m3) | 储能效率/% | |
| 5.8 | 0.001 08 | 52.87 | 0.001 08 | 52.88 |
| 6.0 | 0.001 23 | 53.38 | 0.001 23 | 53.35 |
| 6.2 | 0.001 38 | 53.84 | 0.001 38 | 53.82 |
| 6.4 | 0.001 53 | 54.49 | 0.001 53 | 54.47 |
| 6.6 | 0.001 69 | 54.90 | 0.001 69 | 54.92 |
| 6.8 | 0.001 84 | 55.28 | 0.001 84 | 55.28 |
| 7.0 | 0.001 99 | 55.59 | 0.001 99 | 55.59 |
| [1] | 张沈习,王丹阳,程浩忠,等 .双碳目标下低碳综合能源系统规划关键技术及挑战[J].电力系统自动化,2022,46(8):189-207. |
| ZHANG S X, WANG D Y, CHENG H Z,et al .Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J].Automation of Electric Power Systems,2022,46(8):189-207. | |
| [2] | 周步祥,蔡宇豪,邱一苇,等 .考虑电、氢、氨市场的可再生能源电制氢合成氨系统多主体合作运行策略[J].电力建设,2024,45(11):50-64. |
| ZHOU B X, CAI Y H, QIU Y W,et al .Multi-stakeholder cooperative operation strategy of renewable power to ammonia systems considering the electricity,hydrogen and ammonia markets[J].Electric Power Construction,2024,45(11):50-64. | |
| [3] | 和萍,刘鑫,宫智杰,等 .高比例可再生能源电力系统源荷储联合调峰分层优化运行[J].电力系统保护与控制,2024,52(18):112-122. |
| HE P, LIU X, GONG Z J,et al .Hierarchical optimization operation model for joint peak-load regulation of source-load-storage in a high proportion of renewable energy power system[J].Power System Protection and Control,2024,52(18):112-122. | |
| [4] | 岑增光,耿斌,高明海,等 .考虑天然气混氢的园区综合能源系统电制氢优化配置[J].电力工程技术,2024,43(2):55-64. |
| CEN Z G, GENG B, GAO M H,et al .Optimal configuration of P2H in the park integrated energy system considering natural gas mixed with hydrogen[J].Electric Power Engineering Technology,2024,43(2):55-64. | |
| [5] | 崔茗莉,冯天天,刘利利 .双碳目标下区块链与可再生能源的融合发展研究[J].智慧电力,2024,52(2):17-24. |
| CUI M L, FENG T T, LIU L L .Integration and development of blockchain and renewable energy under double carbon target[J].Smart Power,2024,52(2):17-24. | |
| [6] | 王佳,吴任博,肖健,等 .新型电力系统能源调度与碳排放计价优化方法研究[J].电测与仪表,2024,61(10):17-25. |
| WANG J, WU R B, XIAO J,et al .Research on the optimization method of energy dispatching and carbon emission pricing for novel power system[J].Electrical Measurement & Instrumentation,2024,61(10):17-25. | |
| [7] | 陈海生,刘畅,徐玉杰,等 .储能在碳达峰碳中和目标下的战略地位和作用[J].储能科学与技术,2021,10(5):1477-1485. |
| CHEN H S, LIU C, XU Y J,et al .The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J].Energy Storage Science and Technology,2021,10(5):1477-1485. | |
| [8] | 宋梦,林固静,高赐威,等 .考虑多重不确定性的广义共享储能优化配置方法[J].电工技术学报,2025,40(5):1521-1539. |
| SONG M, LIN G J, GAO C W,et al .A generalized shared energy storage optimization configuration method considering multiple uncertainties[J].Transactions of China Electrotechnical Society,2025,40(5):1521-1539. | |
| [9] | 梅生伟,张彩萍 .新型储能关键技术和商业模式[J].全球能源互联网,2024,7(2):125-126. |
| MEI S W, ZHANG C P .Key technologies and business models of new energy storage[J].Journal of Global Energy Interconnection,2024,7(2):125-126. | |
| [10] | 唐文虎,聂欣昊,钱瞳,等 .面向新型电力系统安全稳定的储能应用技术研究综述与展望[J].广东电力,2024,37(12):3-15. |
| TANG W H, NIE X H, QIAN T,et al .Review and prospect on application technologies of energy storage for safety and stability of new power system[J].Guangdong Electric Power,2024,37(12):3-15. | |
| [11] | 胡娟,杨水丽,侯朝勇,等 .规模化储能技术典型示范应用的现状分析与启示[J].电网技术,2015,39(4):879-885. |
| HU J, YANG S L, HOU C Y,et al .Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J].Power System Technology,2015,39(4):879-885. | |
| [12] | MADAENI S H, SIOSHANSI R, DENHOLM P .How thermal energy storage enhances the economic viability of concentrating solar power[J].Proceedings of the IEEE,2012,100(2):335-347. doi:10.1109/jproc.2011.2144950 |
| [13] | 严小珊,唐惠玲,吴杰康,等 .基于MPC的光-储协同调频优化策略[J].南方能源建设,2024,11(2):125-138. |
| YAN X S, TANG H L, WU J K,et al .Optimization strategy for collaborative frequency modulation of PVs-ESs based on MPC[J].Southern Energy Construction,2024,11(2):125-138. | |
| [14] | 黄龑,郝迎鹏,汪慧娴,等 .基于二阶统一模型的分布式发电并网同步控制研究[J].中国电力,2023,56(12):41-50. |
| HUANG Y, HAO Y P, WANG H X,et al .Research on synchronization control of distributed generation based on second-order unified model[J].Electric Power,2023,56(12):41-50. | |
| [15] | 马成廉,张敉,刘洪波,等 .基于振荡中心迁移的风机并网后电力系统暂态稳定耦合分析[J].电网与清洁能源,2024,40(12):102-110. |
| MA C L, ZHANG M, LIU H B,et al .A coupling analysis of transient stability of power system with grid-connected wind power based on oscillation center transfer[J].Power System and Clean Energy,2024,40(12):102-110. | |
| [16] | 郭欢,徐玉杰,张新敬,等 .蓄热式压缩空气储能系统变工况特性[J].中国电机工程学报,2019,39(5):1366-1377. |
| GUO H, XU Y J, ZHANG X J,et al .Off-design performance of compressed air energy storage system with thermal storage[J].Proceedings of the CSEE,2019,39(5):1366-1377. | |
| [17] | 梅生伟,李瑞,陈来军,等 .先进绝热压缩空气储能技术研究进展及展望[J].中国电机工程学报,2018,38(10):2893-2907. |
| MEI S W, LI R, CHEN L J,et al .An overview and outlook on advanced adiabatic compressed air energy storage technique[J].Proceedings of the CSEE,2018,38(10):2893-2907. | |
| [18] | RICE A T, LI P Y .Optimal efficiency-power tradeoff for an air motor/compressor with volume varying heat transfer capability[C]//ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control.Arlington,Virginia,USA:American Society of Mechanical Engineers,2012:145-152. doi:10.1115/dscc2011-6076 |
| [19] | MOZAYENI H, WANG X L, NEGNEVITSKY M .Dynamic analysis of a low-temperature adiabatic compressed air energy storage system[J].Journal of Cleaner Production,2020,276:124323. doi:10.1016/j.jclepro.2020.124323 |
| [20] | 陈仕卿,许剑,张新敬,等 .储能过程设计参数对压缩空气储能系统性能影响研究[J].热能动力工程,2017,32(3):40-46. |
| CHEN S Q, XU J, ZHANG X J,et al .Effect of design parameters on the performance of regenerative compressed air energy storage system[J].Journal of Engineering for Thermal Energy and Power,2017,32(3):40-46. | |
| [21] | ZHANG X H, WANG X, LI W,et al .Energy and exergy analysis of compressed air engine systems[J].Energy Reports,2021,7:2316-2323. doi:10.1016/j.egyr.2021.04.025 |
| [22] | TIAN Y N, ZHANG T, XIE N N,et al .Conventional and advanced exergy analysis of large-scale adiabatic compressed air energy storage system[J].Journal of Energy Storage,2023,57:106165. doi:10.1016/j.est.2022.106165 |
| [23] | ZHANG L, LIU L X, ZHANG C,et al .Performance analysis of an adiabatic compressed air energy storage system with a pressure regulation inverter-driven compressor[J].Journal of Energy Storage,2021,43:103197. doi:10.1016/j.est.2021.103197 |
| [24] | WEN X K, YANG D H, ZHONG J L,et al .Research on recovery and utilization of waste heat in advanced compressed air energy storage system[J].Energy Reports,2022,8:1436-1445. doi:10.1016/j.egyr.2022.02.082 |
| [25] | BARBOUR E, MIGNARD D, DING Y L,et al .Adiabatic compressed air energy storage with packed bed thermal energy storage[J].Applied Energy,2015,155:804-815. doi:10.1016/j.apenergy.2015.06.019 |
| [26] | SCIACOVELLI A, LI Y L, CHEN H S,et al .Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage-link between components performance and plant performance[J].Applied Energy,2017,185:16-28. doi:10.1016/j.apenergy.2016.10.058 |
| [27] | 韩中合,庞永超 .储气室热力学特性对AA-CAES性能的影响[J].化工进展,2017,36(1):47-52. |
| HAN Z H, PANG Y C .Influence of thermodynamic properties of air storage chamber on the performance of AA-CAES[J].Chemical Industry and Engineering Progress,2017,36(1):47-52. | |
| [28] | 李鹏,安鹏,韩中合,等 .耦合太阳能辅热的AA-CAES系统参数分析[J].动力工程学报,2019,39(7):591-597. |
| LI P, AN P, HAN Z H,et al .Parameter analysis of an AA-CAES system coupled with solar auxiliary heating[J].Journal of Chinese Society of Power Engineering,2019,39(7):591-597. | |
| [29] | YANG Z S, WANG H R, LI R X,et al .A novel combined cooling heating and power system with coupled compressed air energy storage and supercharged diesel engine[J].Energy Storage Scienc and Technology,2020,9(6):1917. |
| [30] | SARMAST S, ROUINDEJ K, FRASER R A,et al .Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems:sizing and design considerations[J].Applied Energy,2024,357:122465. doi:10.1016/j.apenergy.2023.122465 |
| [31] | GE G Q, WANG H R, LI R X,et al .Investigation and improvement of complex characteristics of packed bed thermal energy storage (PBTES) in adiabatic compressed air energy storage (A-CAES) systems[J].Energy,2024,296:131229. doi:10.1016/j.energy.2024.131229 |
| [32] | SOLTANI M, NABAT M H, RAZMI A R,et al .A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system[J].Energy Conversion and Management,2020,222:113203. doi:10.1016/j.enconman.2020.113203 |
| [33] | 康浩强 .基于有机朗肯循环的先进绝热压缩空气储能技术研究[D].北京:华北电力大学,2020. |
| KANG H Q .Research on advanced adiabatic compressed air energy storage technology based on organic Rankine cycle[D].Beijing:North China Electric Power University,2020. | |
| [34] | HAO J H, CHEN Q, LI X,et al .A correction factor-based general thermal resistance formula for heat exchanger design and performance analysis[J].Journal of Thermal Science,2021,30(3):892-901. doi:10.1007/s11630-021-1369-8 |
| [35] | 李鹏,胡庆亚,韩中合 .不同工质和蓄热介质下AA-CAES三联产系统特性研究[J].动力工程学报,2022,42(4):372-379. |
| LI P, HU Q Y, HAN Z H .Research on characteristics of AA-CAES system under different working mediums and heating storage mediums[J].Journal of Chinese Society of Power Engineering,2022,42(4):372-379. | |
| [36] | 李雪梅,杨科,张远 .AA-CAES压缩膨胀系统的运行级数优化[J].工程热物理学报,2013,34(9):1649-1653. |
| LI X M, YANG K, ZHANG Y .Optimization design of compression and expansion stages in advanced adiabatic compressed air energy storage system[J].Journal of Engineering Thermophysics,2013,34(9):1649-1653. | |
| [37] | RAJU M, KHAITAN S K .Modeling and simulation of compressed air storage in caverns:a case study of the Huntorf plant[J].Applied Energy,2012,89(1):474-481. doi:10.1016/j.apenergy.2011.08.019 |
| [1] | 马宁, 赵攀, 刘艾杰, 许文盼, 王江峰. 纯氢补燃型和天然气补燃型压缩空气储能系统特性与㶲经济性对比[J]. 发电技术, 2025, 46(5): 885-896. |
| [2] | 姬海民, 薛磊, 周方盛, 王电, 陈诚, 李靖, 刘辉, 薛宁, 张知翔, 徐党旗. 非补燃液态压缩空气储能系统性能模拟研究[J]. 发电技术, 2024, 45(5): 910-918. |
| [3] | 马培发, 张杰, 于春雨, 汪浩瀚. 竖进平出型地埋管群换热器结构与控制优化[J]. 发电技术, 2024, 45(3): 478-485. |
| [4] | 巫付专, 李昊阳, 巫曦, 陈蒙娜. 电感对DC/DC变换效率影响分析[J]. 发电技术, 2023, 44(4): 576-582. |
| [5] | 徐立, 孙飞虎, 李钧, 张强强. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术, 2023, 44(2): 229-234. |
| [6] | 杨健, 柳玉, 黄坤鹏, 罗亚洲, 牛四清, 王伟, 环加飞, 张雷, 张沛, 李华伟. 考虑发电工况和站内损耗的风电场可用发电功率估算方法[J]. 发电技术, 2023, 44(2): 235-243. |
| [7] | 樊昂, 李录平, 张世海, 欧阳敏南, 文贤馗, 陈尚年. 大型风电机组塔筒动力学特性与寿命损耗研究进展[J]. 发电技术, 2022, 43(3): 421-430. |
| [8] | 王东雷. 浆液冷却烟气脱白设计影响因素及节水效果分析[J]. 发电技术, 2021, 42(3): 382-388. |
| [9] | 李姚旺,苗世洪,尹斌鑫,张世旭,张松岩. 计及先进绝热压缩空气储能多能联供特性的微型综合能源系统优化调度模型[J]. 发电技术, 2020, 41(1): 41-49. |
| [10] | 王琳琳,陈长征,周勃,孙宇梦,康爽,杜金尧. 风力机叶片复合材料裂尖温度场及微观损伤研究[J]. 发电技术, 2019, 40(6): 605-610. |
| [11] | 陈军华,章文杰,徐鹏志,何建乐,车方. 电厂锅炉优化改造试验分析[J]. 发电技术, 2019, 40(1): 61-65. |
| [12] | 文贤馗,张世海,邓彤天,李盼,陈雯. 大容量电力储能调峰调频性能综述[J]. 发电技术, 2018, 39(6): 487-492. |
| [13] | 李本新,韩学山,蒋哲,李文博. 计及网损的快速经济调度方法[J]. 发电技术, 2018, 39(1): 90-95. |
| [14] | 董鹏, 陈明, 王文涛, 王涛英. 锅炉水冷壁管氢损伤爆管原因分析[J]. 发电技术, 2017, 38(6): 61-63. |
| [15] | 孙良伟, 朱建华, 张宏伟, 陈运涛, 高峰, 胡玉春. 浅析消弧线圈接地系统电压不平衡对电能计量装置误差的影响[J]. 发电技术, 2017, 38(5): 63-65. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||