发电技术 ›› 2025, Vol. 46 ›› Issue (6): 1085-1096.DOI: 10.12096/j.2096-4528.pgt.25331

• 分布式能源 • 上一篇    

基于热泵技术的低碳排冷热电联供系统㶲经济性能研究

罗城鑫1, 吕彦龙2, 刘润宝1, 谢玉荣1, 王雨昊2, 刘锋2, 隋军2   

  1. 1.华电电力科学研究院有限公司,浙江省 杭州市 310030
    2.中国科学院工程热物理研究所,北京市 海淀区100190
  • 收稿日期:2025-07-29 修回日期:2025-08-20 出版日期:2025-12-31 发布日期:2025-12-25
  • 通讯作者: 刘锋
  • 作者简介:罗城鑫(1987),男,硕士,高级工程师,研究方向为综合能源、新型储能和分布式可再生能源技术,chengxin-luo@chder.com
    吕彦龙(2000),男,博士研究生,从事热泵技术、余热回收技术等研究,lvyanlong@iet.cn
    刘润宝(1981),男,硕士,从事热泵技术、余热回收技术等研究,runbao-liu@chder.com
    谢玉荣(1982),男,博士,正高级工程师,从事综合能源系统优化、储能技术方面的研究,yurong-xie@chder.com
    王雨昊(2000),男,硕士研究生,从事热泵技术、余热利用技术等研究,wangyuhao@iet.cn
    刘锋(1987),男,博士,副研究员,从事多能互补与余热利用等研究,本文通信作者,liufeng@iet.cn
    隋军(1973),男,博士,研究员,主要从事多能源互补分布式能源系统方面的研究,suijun@iet.cn
  • 基金资助:
    国家重点研发计划项目(2024YFB4206500)

Exergoeconomic Research on Low-Carbon-Emission Combined Cooling, Heating, and Power System Based on Heat Pump Technology

Chengxin LUO1, Yanlong LÜ2, Runbao LIU1, Yurong XIE1, Yuhao WANG2, Feng LIU2, Jun SUI2   

  1. 1.Huadian Electric Power Research Institute Co. , Ltd. , Hangzhou 310030, Zhejiang Province, China
    2.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
  • Received:2025-07-29 Revised:2025-08-20 Published:2025-12-31 Online:2025-12-25
  • Contact: Feng LIU
  • Supported by:
    National Key R&D Program of China(2024YFB4206500)

摘要:

目的 在“双碳”战略与全球能源结构转型背景下,如何实现传统能源系统的高效低碳化运行是当前亟需突破的难题。为此,构建了一种耦合热泵(heat pump,HP)技术的低碳排冷热电联供(combined cooling, heating, and power,CCHP)系统。 方法 通过多级余热回收与温区协同匹配机制,优化能量梯级利用路径;建立涵盖热力学、环境友好性、经济及㶲经济性能的多维度评价模型,并与传统系统性能进行了对比。 结果 经济性分析结果显示,HP的引入使单位产电成本从1.24元/(kW⋅h)增至1.43元/(kW⋅h),但单位产能成本从0.24元/(kW⋅h)降至0.22元/(kW⋅h),综合能效提升;灵敏度分析结果显示,运行时间与利率对成本影响最大;㶲经济分析表明,透平、碳捕集与封存(carbon capture and storage,CCS)系统和压缩机分别贡献67.019%、17.107%和8.169%的㶲损失,是未来优化的核心方向。 结论 研究成果为低碳排CCHP系统的设计与推广提供了理论支撑。

关键词: 冷热电联供(CCHP)系统, 余热回收, 热泵(HP)技术, 碳捕集与封存(CCS), 碳排放, 热力学分析, 环境友好性, 㶲经济分析

Abstract:

Objectives Under the background of the “dual-carbon” strategy and the global energy structure transition, achieving high-efficiency and low-carbon operation of conventional energy systems is a pressing challenge that needs to be overcome. To address this, an low-carbon-emission combined cooling, heating, and power (CCHP) system coupled with heat pump (HP) technology is proposed. Methods A multi-stage waste heat recovery and temperature-zone coordinated matching mechanism is employed to optimize the energy cascade utilization pathway. A multi-dimensional evaluation model, covering thermodynamics, environmental friendliness, economic efficiency, and exergoeconomic performance, is established and compared with the performance of conventional systems. Results The results of economic analysis show that the heat-pump integration increases the unit power generation cost from 1.24 to 1.43 yuan/(kW⋅h), but reduces the unit capacity cost from 0.24 to 0.22 yuan/(kW⋅h), resulting in an overall improvement in energy efficiency. The sensitivity analysis results reveal that operating duration and interest rate have the greatest impact on costs. Exergoeconomic analysis indicates that the turbine, carbon capture and storage (CCS) system, and compressor contribute 67.019%, 17.107%, and 8.169% of the exergy loss, respectively, representing the core directions for future optimization. Conclusions These research findings provide a theoretical basis for the design and promotion of low-carbon-emission CCHP systems.

Key words: combined cooling, heating, and power (CCHP) system, waste heat recovery, heat pump (HP) technology, carbon capture and storage (CCS), carbon emissions, thermodynamic analysis, environmental friendliness, exergoeconomic analysis

中图分类号: