发电技术 ›› 2025, Vol. 46 ›› Issue (4): 849-856.DOI: 10.12096/j.2096-4528.pgt.23136
• 发电及环境保护 • 上一篇
张帅柠1, 高明明1, 王勇权1, 王唯铧1, 于浩洋1, 黄中2
收稿日期:2024-05-28
修回日期:2024-09-01
出版日期:2025-08-31
发布日期:2025-08-21
通讯作者:
高明明
作者简介:基金资助:Shuaining ZHANG1, Mingming GAO1, Yongquan WANG1, Weihua WANG1, Haoyang YU1, Zhong HUANG2
Received:2024-05-28
Revised:2024-09-01
Published:2025-08-31
Online:2025-08-21
Contact:
Mingming GAO
Supported by:摘要:
目的 随着“双碳”目标的提出,我国清洁能源发电量占比不断提升,为促进新能源发电的消纳,火电机组频繁采用宽负荷调峰运行模式,因此,有必要建立能够适应宽负荷运行工况下的燃煤循环流化床(circulating fluidized bed,CFB)锅炉SO2排放浓度模型,以实现CFB机组SO2超低排放。 方法 通过对SO2生成及脱除动态特性进行深度研究,采用机理分析方法结合质量守恒方程建立了炉膛出口SO2排放浓度动态集总参数模型;通过对模型输入量的合理简化,建立了从给煤给风到脱硫塔出口SO2排放的脱硫全过程一体化动态模型;并利用CFB锅炉实际测量数据中的稳态工况及动态工况数据段进行仿真验证。 结果 所建立的动态模型能够提前约240 s预测净烟气的排放动态趋势。 结论 该模型能够反映炉内脱硫过程的动态特性,在宽负荷工况下具有一定的适用性。
中图分类号:
张帅柠, 高明明, 王勇权, 王唯铧, 于浩洋, 黄中. 循环流化床锅炉宽负荷一体化脱硫建模研究[J]. 发电技术, 2025, 46(4): 849-856.
Shuaining ZHANG, Mingming GAO, Yongquan WANG, Weihua WANG, Haoyang YU, Zhong HUANG. Integrated Modeling Study of Desulfurization in Circulating Fluidized Bed Boilers Under Wide Load Conditions[J]. Power Generation Technology, 2025, 46(4): 849-856.
| 参数 | Car | Har | Oar | Nar | Sar | Aar | Mar | Qnet.ar | Vdaf |
|---|---|---|---|---|---|---|---|---|---|
| 数值 | 48.65% | 2.92% | 8.25% | 0.57% | 2.19% | 13.62% | 23.8% | 17.73 MJ/kg | 41.11% |
表1 煤质分析
Tab. 1 Analysis of coal quality
| 参数 | Car | Har | Oar | Nar | Sar | Aar | Mar | Qnet.ar | Vdaf |
|---|---|---|---|---|---|---|---|---|---|
| 数值 | 48.65% | 2.92% | 8.25% | 0.57% | 2.19% | 13.62% | 23.8% | 17.73 MJ/kg | 41.11% |
| 参数 | 烧失量 | W(CaO) | w(MgO) | w(Fe2O3) | w(SiO2) | w(Al2O3) | w(K2O) | w(SO3) | w(Na2O) |
|---|---|---|---|---|---|---|---|---|---|
| 数值/% | 43.20 | 42.05 | 9.24 | 0.42 | 3.86 | 0.40 | 0.07 | 0.01 | 0.006 |
表2 石灰石成分分析
Tab. 2 Analysis of limestone composition
| 参数 | 烧失量 | W(CaO) | w(MgO) | w(Fe2O3) | w(SiO2) | w(Al2O3) | w(K2O) | w(SO3) | w(Na2O) |
|---|---|---|---|---|---|---|---|---|---|
| 数值/% | 43.20 | 42.05 | 9.24 | 0.42 | 3.86 | 0.40 | 0.07 | 0.01 | 0.006 |
| 误差指标 | 原烟气SO2排放浓度模型 | 净烟气SO2排放浓度模型 |
|---|---|---|
| MAE/(mg/m3) | 178.75 | 2.89 |
| RMSE/(mg/m3) | 229.45 | 4.04 |
| MAPE/% | 9.35 | 25.86 |
表3 稳态工况下的模型误差汇总
Tab. 3 Summary of model errors under steady-state conditions
| 误差指标 | 原烟气SO2排放浓度模型 | 净烟气SO2排放浓度模型 |
|---|---|---|
| MAE/(mg/m3) | 178.75 | 2.89 |
| RMSE/(mg/m3) | 229.45 | 4.04 |
| MAPE/% | 9.35 | 25.86 |
| [1] | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
| ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
| [2] | 王志轩,张晶杰,董博,等 .“双碳”目标下燃煤电厂灵活性改造及政策建议[J].电力科技与环保,2024,40(3):213-220. |
| WANG Z X, ZHANG J J, DONG B,et al .Research on technology and policy of flexibility renovation for coal-fired power plants under carbon peaking and carbon neutrality goal[J].Electric Power Technology and Environmental Protection,2024,40(3):213-220. | |
| [3] | 王放放,杨鹏威,赵光金,等 .新型电力系统下火电机组灵活性运行技术发展及挑战[J].发电技术,2024,45(2):189-198. |
| WANG F F, YANG P W, ZHAO G J,et al .Development and challenge of flexible operation technology of thermal power units under new power system[J].Power Generation Technology,2024,45(2):189-198. | |
| [4] | 朱法华,徐静馨,王圣,等 .中国燃煤电厂大气污染物治理历程及展望[J].电力科技与环保,2023,39(5):371-384. |
| ZHU F H, XU J X, WANG S,et al .Processes and prospects of air pollutant control in coal-fired power plants in China[J].Electric Power Technology and Environmental Protection,2023,39(5):371-384. | |
| [5] | 李璐,张泽端,毕贵红,等 .“双碳”目标下基于系统动力学的发电行业碳减排政策研究[J].电力系统保护与控制,2024,52(12):69-81. |
| LI L, ZHANG Z D, BI G H,et al .Carbon emission reduction policy in the power generation sector based on system dynamics with “dual carbon” targets[J].Power System Protection and Control,2024,52(12):69-81. | |
| [6] | 刘天蔚,边晓燕,吴珊,等 .电力系统碳排放核算综述与展望[J].电力系统保护与控制,2024,52(4):176-187. |
| LIU T W, BIAN X Y, WU S,et al .Overview and prospect of carbon emission accounting in electric power systems[J].Power System Protection and Control,2024,52(4):176-187. | |
| [7] | 曲立涛,齐晓辉,王德鑫,等 .基于CEMS数据的超低排放燃煤机组大气污染物排放特性分析[J].中国电力,2023,56(2):171-178. doi:10.11930/j.issn.1004-9649.202203075 |
| QU L T, QI X H, WANG D X,et al .Analysis of air pollutant emission characteristics of ultra-low emission coal-fired units based on CEMS data[J].Electric Power,2023,56(2):171-178. doi:10.11930/j.issn.1004-9649.202203075 | |
| [8] | 国务院新闻办公室 .《新时代的中国能源发展》白皮书[EB/OL].(2020-12-21)[2023-10-13].https∶//. |
| The State Council Information Office of the People’s Republic of China .White paper on energy development in China in the new era[EB/OL].(2020-12-21)[2023-10-13].https∶//. | |
| [9] | 中华人民共和国生态环境部,国家发展和改革委员会,国家能源局 .关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知[EB/OL].(2015-12-11)[2023-09-25].https∶//. |
| Ministry of Ecology and Environment of the People’s Republic of China,National Development and Reform Commission,National Energy Administration .Notice on issuing the work plan for fully implementing ultra low emission and energy conservation renovation of coal-fired power plants[EB/OL].(2015-12-11)[2023-09-25].https∶//. | |
| [10] | 王洪健,王海洋,孔皓,等 .135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J].发电技术,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 |
| WANG H J, WANG H Y, KONG H,et al .Retrofitting strategy and operating technology of pure burning Zhundong coal in a 135 MW circulating fluidized bed boiler[J].Power Generation Technology,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 | |
| [11] | YUE G, CAI R, LU J,et al .From a CFB reactor to a CFB boiler:the review of R&D progress of CFB coal combustion technology in China[J].Powder Technology,2017,316:18-28. doi:10.1016/j.powtec.2016.10.062 |
| [12] | LÜ J, YANG H, LING W,et al .Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler[J].Frontiers in Energy,2019,13(1):114-119. doi:10.1007/s11708-017-0512-4 |
| [13] | CAI R, ZHANG H, ZHANG M,et al .Development and application of the design principle of fluidization state specification in CFB coal combustion[J].Fuel Processing Technology,2018,174:41-52. doi:10.1016/j.fuproc.2018.02.009 |
| [14] | 黄中,杨娟,车得福 .大容量循环流化床锅炉技术发展应用现状[J].热力发电,2019,48(6):1-8. |
| HUANG Z, YANG J, CHE D F .Application and development status of large-scale CFB boilers[J].Thermal Power Generation,2019,48(6):1-8. | |
| [15] | 孙献斌,戚峰,辛以振,等 .330 MW循环流化床锅炉燃烧调整试验研究[J].发电技术,2019,40(3):281-285. |
| SUN X B, QI F, XIN Y Z,et al .Test study on combustion adjustment of 330 MW circulating fluidized bed boiler[J].Power Generation Technology,2019,40(3):281-285. | |
| [16] | 范海东 .燃煤机组超低排放智能调控系统研究及工业验证[D].杭州:浙江大学,2022. |
| FAN H D .Research and industrial verification of ultra-low emission intelligent control system for coal-fired units[D].Hangzhou:Zhejiang University,2022. | |
| [17] | 刘东旭,张潇元,马青,等 .燃煤机组SO3生成与控制技术路线分析[J].中国电力,2024,57(6):235-242. |
| LIU D X, ZHANG X Y, MA Q,et al .Analysis on SO3 generation,migration and control technology of coal-fired units[J].Electric Power,2024,57(6):235-242. | |
| [18] | 刘文斌,李璐璐,李晓金,等 .脱硫湿烟气喷淋冷凝过程中的参数优化研究[J].发电技术,2023,44(1):107-114. doi:10.12096/j.2096-4528.pgt.21064 |
| LIU W B, LI L L, LI X J,et al .Study on parameter optimization of desulfurized wet flue gas in spray condensation process[J].Power Generation Technology,2023,44(1):107-114. doi:10.12096/j.2096-4528.pgt.21064 | |
| [19] | GUNGOR A .One dimensional numerical simulation of small scale CFB combustors[J].Energy Conversion and Management,2009,50(3):711-722. doi:10.1016/j.enconman.2008.10.003 |
| [20] | WANG C, CHEN L .The effect of steam on simultaneous calcination and sulfation of limestone in CFBB[J].Fuel,2016,175:164-171. doi:10.1016/j.fuel.2016.02.028 |
| [21] | 李仕成,马素霞 .300 MW循环流化床锅炉SO2生成与控制的建模研究[J].中国电机工程学报,2021,41(17):5966-5972. |
| LI S C, MA S X .Model study on SO2 generation and control of 300 MW CFB boiler[J].Proceedings of the CSEE,2021,41(17):5966-5972. | |
| [22] | ZHANG H, GAO M, LIU C,et al .Dynamic prediction of in-situ SO2 emission and operation optimization of combined desulfurization system of 300 MW CFB boiler[J].Fuel,2022,324(1):124421. doi:10.1016/j.fuel.2022.124421 |
| [23] | 陈习勋,吴凯彤,何杰,等 .基于集成机器学习模型的短期光伏出力区间预测[J].智慧电力,2024,52(2):87-93. |
| CHEN X X, WU K T, HE J,et al . Short term photovoltaic output interval prediction based on integrated machine learning model[J].Smart Power,2024,52(2):87-93. | |
| [24] | CHEN J, GAO M, ZHANG H,et al .Dynamic prediction of SO2 emission based on hybrid modeling method for coal-fired circulating fluidized bed[J].Fuel,2023,346:128284. doi:10.1016/j.fuel.2023.128284 |
| [25] | 洪文鹏,陈重 .基于偏最小二乘回归的氨法烟气脱硫效率预测[J].动力工程学报,2013,33(3):205-209. doi:10.3969/j.issn.1674-7607.2013.03.008 |
| HONG W P, CHEN Z .Efficiency prediction of ammonia flue gas desulfurization based on partial least squares regression[J].Journal of Chinese Society of Power Engineering,2013,33(3):205-209. doi:10.3969/j.issn.1674-7607.2013.03.008 | |
| [26] | 伊长涛,辛胜伟,王虎,等 .300 MW循环流化床锅炉机组超低排放改造[J].洁净煤技术,2019,25(S2):48-52. |
| YI C T, XIN S W, WANG H,et al .Ultra-low emission modification of 300 MW circulating fluidized bed boilers unit[J].Clean Coal Technology,2019,25(S2):48-52. | |
| [27] | 高明明 .大型循环流化床锅炉燃烧状态监测研究[D].北京:华北电力大学,2013. |
| GAO M M .Research on combustion state monitoring of large circulating fluidized bed boiler[D].Beijing:North China Electric Power University,2013. | |
| [28] | ZHANG H, GAO M, YUE G,et al .Dynamic model for subcritical circulating fluidized bed boiler-turbine units operated in a wide-load range[J].Applied Thermal Engineering,2022,213:118742. doi:10.1016/j.applthermaleng.2022.118742 |
| [29] | 孙保民,赵立正 .660 MW机组CFB锅炉设计煤种排放特性试验[J].热力发电,2015,44(11):81-85. |
| SUN B M, ZHAO L Z .Experimental study on emission characteristics of design coal for a 660 MW unit circulating fluidized bed boiler[J].Thermal Power Generation,2015,44(11):81-85. | |
| [30] | 舒坚 .燃煤电厂湿法脱硫系统关键过程建模及预测控制研究[D].杭州:浙江大学,2020. |
| SHU J .Research on key process modeling and predictive control for wet desulfurization system in coal-fired unit[D].Hangzhou:Zhejiang University,2020. | |
| [31] | ZHU J, YE S C, BAI J,et al .A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization[J].Fuel Processing Technology,2015,129:15-23. doi:10.1016/j.fuproc.2014.07.002 |
| [32] | 张思海,张双铭,张俊杰,等 .330 MW亚临界CFB锅炉烟气再循环深度调峰运行性能研究[J].洁净煤技术,2021,27(1):291-298. |
| ZHANG S H, ZHANG S M, ZHANG J J,et al .Performance research on deep peak regulation with flue gas recirculation in a 330 MW subcritical CFB boiler[J].Clean Coal Technology,2021,27(1):291-298. |
| [1] | 汪义财, 喻鑫, 于敦喜. 能源植物芦竹燃烧利用研究进展[J]. 发电技术, 2025, 46(3): 570-578. |
| [2] | 张鹏新, 高明明, 解沛然, 于浩洋, 张洪福, 黄中. 基于数据驱动的循环流化床机组深度调峰NO x 预测[J]. 发电技术, 2025, 46(3): 627-636. |
| [3] | 董建宁, 安吉振, 陈衡, 潘佩媛, 徐钢, 王修彦. 考虑天气影响的火电机组空冷系统性能预测方法[J]. 发电技术, 2024, 45(6): 1105-1113. |
| [4] | 解婷婷, 孙友源, 郭振, 宋明光. 火电机组碳排放连续监测技术研究与应用综述[J]. 发电技术, 2024, 45(5): 919-928. |
| [5] | 郑淇薇, 赵欣悦, 卢荻, 陈衡, 潘佩媛, 刘彤. 多类型小容量火电机组热电解耦潜力与经济性对比评估[J]. 发电技术, 2024, 45(5): 929-940. |
| [6] | 王轶男, 吕佳阳, 陈衡, 张国强, 徐钢, 翟融融. 基于Aspen Plus的气流床煤气化炉建模及其变工况特性研究[J]. 发电技术, 2024, 45(5): 951-958. |
| [7] | 刘旺, 陈连, 龚高阳, 李智华, 薛文华, 石金刚, 谢军, 李雷雷, 姚荣财, 王召鹏, 杨延西, 邓毅, 张晨辉. 基于数字孪生的空气预热器预测性维护模式研究[J]. 发电技术, 2024, 45(4): 622-632. |
| [8] | 季恩昌, 杨冬, 孙佰仲. 高水分褐煤流动性实验研究[J]. 发电技术, 2024, 45(4): 633-640. |
| [9] | 丁湧. 1 000 MW超超临界燃煤锅炉深度调峰研究[J]. 发电技术, 2024, 45(3): 382-391. |
| [10] | 陈晓峰, 左川, 赵宁, 黄凯, 王惠杰. 集成蓄热装置的火电机组调峰特性分析[J]. 发电技术, 2024, 45(3): 392-400. |
| [11] | 贾志军, 范伟, 任少君, 魏唐斌. 600 MW亚临界机组长时间深度调峰燃烧稳定性研究[J]. 发电技术, 2024, 45(2): 216-225. |
| [12] | 郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢. 深度调峰背景下火电机组热电解耦技术路径对比分析[J]. 发电技术, 2024, 45(2): 207-215. |
| [13] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
| [14] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
| [15] | 李展, 杨振勇, 刘磊, 陈振山, 季卫鸣, 洪烽. 火电机组深度调峰工况下炉侧蓄热系数对一次调频能力的影响分析[J]. 发电技术, 2024, 45(2): 226-232. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||