发电技术 ›› 2025, Vol. 46 ›› Issue (3): 467-481.DOI: 10.12096/j.2096-4528.pgt.25071
• AI在新型电力系统中的应用 • 上一篇
陈艺璇1,2, 王嘉阳1,2, 卓映君1,2, 卢斯煜1,2, 周保荣1,2
收稿日期:
2025-02-05
修回日期:
2025-05-01
出版日期:
2025-06-30
发布日期:
2025-06-16
作者简介:
基金资助:
Yixuan CHEN1,2, Jiayang WANG1,2, Yingjun ZHUO1,2, Siyu LU1,2, Baorong ZHOU1,2
Received:
2025-02-05
Revised:
2025-05-01
Published:
2025-06-30
Online:
2025-06-16
Supported by:
摘要:
目的 随着新能源渗透率不断攀升,亟需通过精细化的时序运行模拟进行电力电量平衡分析、规划方案设计及市场机制评估。然而,由于新能源的随机性、波动性,以及电网规模的不断扩大,运行模拟面临着计算速度与精度难以兼顾的困境,而人工智能(artificial intelligence,AI)因其强大的表征、泛化及自学习能力,为解决当前难题提供了新的工具和思路。为此,系统性地分析了AI在电力系统运行模拟加速中应用的现状和必要性,并对未来发展进行了展望。 方法 首先,从数学角度将加速方法的思路划分为场景聚类、机组聚合、约束缩减及算法加速;其次,深入分析了各个方向上AI 应用的必要性,回答了“为什么需要AI”这一关键问题;然后,系统性地总结了AI应用于运行模拟加速的现状及优势;最后,给出了AI在电力系统中的应用场景建议及未来展望。 结论 AI可以在多个方面为运行模拟加速提供有效支持,尤其是在处理非线性关联关系、替代专家经验、刻画模糊规则时展现出显著优势。
中图分类号:
陈艺璇, 王嘉阳, 卓映君, 卢斯煜, 周保荣. 人工智能在电力系统运行模拟加速中的应用综述[J]. 发电技术, 2025, 46(3): 467-481.
Yixuan CHEN, Jiayang WANG, Yingjun ZHUO, Siyu LU, Baorong ZHOU. Review of Artificial Intelligence Applications in Accelerating Operational Simulation of Power Systems[J]. Power Generation Technology, 2025, 46(3): 467-481.
加速思路 | 使用AI的原因 | 代表性AI技术及其优势 | 应用效果 | |
---|---|---|---|---|
模型层面 | 场景聚类 | 传统场景聚合依赖人工设定规则或统计学模型刻画场景相似度。然而,场景相似度的衡量规则尚不清晰,且呈现高度非线性特征 | 深度聚类:包括采用机器学习[ | 文献[ |
机组聚合 | 1)计算成本随电力系统规模呈现指数级增长,容易陷入维数灾难; 2)机组聚合的原则尚不清晰,高度依赖人工设定规则,因此容易造成聚类误差 | 基于机器学习的社团发现算法[ | 文献[ | |
约束缩减 | 不管是基于凸优化还是基于经验规则的约束缩减方法,为保证效果,其计算量必然是巨大的,甚至是接近NP-hard的。然而,任意一个运行状态及该状态下的SAC都存在一个可以证明的映射关系[ | 基于神经网络的端到端SIC集预测[ | 文献[ | |
算法层面 | 1)由于MILP的NP-hard特性,在基于运筹优化的求解方法中,仍然存在大量的启发式过程及人工规则。此外,对于不同的MILP问题结构,很难定义通用的寻优规则; 2)无论是BnB还是割平面法,都是逐步缩小寻优区域的串行计算,计算效率较低 | 1)imitation learning:让智能体在学习海量MILP实例的分支经验后,形成一套参数化的分支节点选择规则[ 2)warm-start技术(包括基于神经网络端到端的warm-start[ | 文献[ |
表1 AI在电力系统运行模拟加速中的应用
Tab.1 Applications of AI in accelerating operation simulation of power systems
加速思路 | 使用AI的原因 | 代表性AI技术及其优势 | 应用效果 | |
---|---|---|---|---|
模型层面 | 场景聚类 | 传统场景聚合依赖人工设定规则或统计学模型刻画场景相似度。然而,场景相似度的衡量规则尚不清晰,且呈现高度非线性特征 | 深度聚类:包括采用机器学习[ | 文献[ |
机组聚合 | 1)计算成本随电力系统规模呈现指数级增长,容易陷入维数灾难; 2)机组聚合的原则尚不清晰,高度依赖人工设定规则,因此容易造成聚类误差 | 基于机器学习的社团发现算法[ | 文献[ | |
约束缩减 | 不管是基于凸优化还是基于经验规则的约束缩减方法,为保证效果,其计算量必然是巨大的,甚至是接近NP-hard的。然而,任意一个运行状态及该状态下的SAC都存在一个可以证明的映射关系[ | 基于神经网络的端到端SIC集预测[ | 文献[ | |
算法层面 | 1)由于MILP的NP-hard特性,在基于运筹优化的求解方法中,仍然存在大量的启发式过程及人工规则。此外,对于不同的MILP问题结构,很难定义通用的寻优规则; 2)无论是BnB还是割平面法,都是逐步缩小寻优区域的串行计算,计算效率较低 | 1)imitation learning:让智能体在学习海量MILP实例的分支经验后,形成一套参数化的分支节点选择规则[ 2)warm-start技术(包括基于神经网络端到端的warm-start[ | 文献[ |
1 | 《新型电力系统发展蓝皮书》编委组 .新型电力系统发展蓝皮书[M].北京:中国电力出版社,2023:1-24. |
Group Editorial .New power system development blue book[M].Beijing:China Electric Power Press,2023:1-24. | |
2 | 李希德,张艳,曹阳,等 .基于精细化模拟的电力系统电力电量平衡研究[J].智慧电力,2024,52(10):70-78. |
LI X D, ZHANG Y, CAO Y,et al .Power and energy balance method for power system based on refined simulation[J].Smart Power,2024,52(10):70-78. | |
3 | 刘与铮,丁涛,肖杨,等 .基于拉格朗日松弛及子问题解耦动态规划的周机组组合快速求解方法[J/OL].电力自动化设备,1-14[2025-05-29]. . |
LIU H B, DING T, XIAO Y,et al .Fast solving method for weekly unit commitment based on Lagrangian relaxation and subproblem decoupling dynamic programming[J/OL].Electric Power Automation Equipment,1-14[2025-05-29]. . | |
4 | 杨钤,王建学,杨续松,等 .电力电量平衡分析及其加速求解技术的发展、应用与展望[J].电网技术,2024,48(2):760-778. |
YANG Q, WANG J X, YANG X S,et al .Development,application and prospect of power and energy balance analysis and its speedup computation technologies[J].Power System Technology,2024,48(2):760-778. | |
5 | 刘洪波,刘珅诚,盖雪扬,等 .高比例新能源接入的主动配电网规划综述[J].发电技术,2024,45(1):151-161. doi:10.12096/j.2096-4528.pgt.22106 |
LIU H B, LIU S C, GAI X Y,et al .Overview of active distribution network planning with high proportion of new energy access[J].Power Generation Technology,2024,45(1):151-161. doi:10.12096/j.2096-4528.pgt.22106 | |
6 | 黄河,王建学,肖云鹏,等 .新型电力系统电力电量平衡分析关键技术与研究框架[J].电力建设,2024,45(9):1-12. doi:10.12204/j.issn.1000-7229.2024.09.001 |
HUANG H, WANG J X, XIAO Y P,et al .Key technologies and research framework for the power and energy balance analysis in new-type power systems[J].Electric Power Construction,2024,45(9):1-12. doi:10.12204/j.issn.1000-7229.2024.09.001 | |
7 | 臧延雪,边晓燕,梁思琪,等 .计及线路传输能力的新能源电力系统灵活性评估及优化调度方法[J].电力系统保护与控制,2023,51(11):15-26. |
ZANG Y X, BIAN X Y, LIANG S Q,et al .Flexibility evaluation and optimal dispatching method of a renewable energy power system considering line transmission capacity[J].Power System Protection and Control,2023,51(11):15-26. | |
8 | 张帆,张真,鲜文军,等 .青海电网新能源多尺度消纳规律及归因分析[J].电网与清洁能源,2024,40(4):143-149. doi:10.3969/j.issn.1674-3814.2024.04.017 |
ZHANG F, ZHANG Z, XIAN W J,et al .A study on the multi-scale consumption rule of new energy in Qinghai power grid and its attribution analysis[J].Power System and Clean Energy,2024,40(4):143-149. doi:10.3969/j.issn.1674-3814.2024.04.017 | |
9 | 章雪萌,孟祥娟,毛福斌,等 .考虑多时间尺度的新能源特性对地区电网的影响评估[J].南方能源建设,2023,10(5):166-173. |
ZHANG X M, MENG X J, MAO F B,et al .Impact assessment of new energy characteristics on regional power grid considering multiple time scales[J].Southern Energy Construction,2023,10(5):166-173. | |
10 | 张玮,白恺,鲁宗相,等 .特大型新能源基地面临挑战及未来形态演化分析[J].全球能源互联网,2023,6(1):10-25. |
ZHANG W, BAI K, LU Z X,et al .Analysis of the challenges and future morphological evolution of super large-scale renewable energy base[J].Journal of Global Energy Interconnection,2023,6(1):10-25. | |
11 | 汪际峰,李鹏,梁锦照,等 .电力系统数字化历程与发展趋势[J].南方电网技术,2021,15(11):1-8. doi:10.13648/j.cnki.issn1674-0629.2021.11.001 |
WANG J F, LI P, LIANG J Z,et al .Development history and trends of power system digitalization[J].Southern Power System Technology,2021,15(11):1-8. doi:10.13648/j.cnki.issn1674-0629.2021.11.001 | |
12 | 王翔宇,陈武晖,郭小龙,等 .发电系统数字化研究综述[J].发电技术,2024,45(1):120-141. doi:10.12096/j.2096-4528.pgt.23030 |
WANG X Y, CHEN W H, GUO X L,et al .Review of research on the digitalization of power generation system[J].Power Generation Technology,2024,45(1):120-141. doi:10.12096/j.2096-4528.pgt.23030 | |
13 | 赵日晓,闫冬,周翔,等 .人工智能支撑新型电力系统能源供给及消纳[J].全球能源互联网,2023,6(2):186-195. |
ZHAO R X, YAN D, ZHOU X,et al .Artificial intelligence supports energy supply and consumption in new power system[J].Journal of Global Energy Interconnection,2023,6(2):186-195. | |
14 | 陈羽飞,赵琦,何永君,等 .人工智能在电力系统中的应用综述[J].分布式能源,2023,8(6):49-57. |
CHEN Y F, ZHAO Q, HE Y J,et al .An overview of the application of artificial intelligence in power systems[J].Distributed Energy,2023,8(6):49-57. | |
15 | 陶思钰,江福庆 .集群化发展模式下风电场预测、规划及控制关键技术综述[J].电力工程技术,2024,43(1):86-99. |
TAO S Y, JIANG F Q .Review of the key technologies of wind farm cluster prediction,planning and control[J].Electric Power Engineering Technology,2024,43(1):86-99. | |
16 | 王继业,赵俊华 .基于人工智能技术的新型电力系统优化运行与控制[J].全球能源互联网,2023,6(3):238-239. |
WANG J Y, ZHAO J H .Optimal operation and control of new power system based on artificial intelligence technology[J].Journal of Global Energy Interconnection,2023,6(3):238-239. | |
17 | 霍龙,张誉宝,陈欣 .人工智能在分布式储能技术中的应用[J].发电技术,2022,43(5):707-717. doi:10.12096/j.2096-4528.pgt.22109 |
HUO L, ZHANG Y B, CHEN X .Artificial intelligence applications in distributed energy storage technologies[J].Power Generation Technology,2022,43(5):707-717. doi:10.12096/j.2096-4528.pgt.22109 | |
18 | 朱永利,石鑫,王刘旺 .人工智能在电力系统中应用的近期研究热点介绍[J].发电技术,2018,39(3):204-212. doi:10.12096/j.2096-4528.pgt.2018.031 |
ZHU Y L, SHI X, WANG L W .Recent research hotspot introduction on the application of artificial intelligence in power system[J].Power Generation Technology,2018,39(3):204-212. doi:10.12096/j.2096-4528.pgt.2018.031 | |
19 | 魏利屾,艾小猛,方家琨,等 .面向新型电力系统的时序生产模拟应用与求解技术综述[J].电力系统自动化,2024,48(6):170-184. |
WEI L S, AI X M, FANG J K,et al .Review on applications and solving techniques of time-series production simulation for new power system[J].Automation of Electric Power Systems,2024,48(6):170-184. | |
20 | 朱永利,尹金良 .人工智能在电力系统中的应用研究与实践综述[J].发电技术,2018,39(2):106-111. doi:10.12096/j.2096-4528.pgt.2018.017 |
ZHU Y L, YIN J L .Review of research and practice of artificial intelligence application in power systems[J].Power Generation Technology,2018,39(2):106-111. doi:10.12096/j.2096-4528.pgt.2018.017 | |
21 | 何伊慧,管霖,王彤,等 .南方电网新型电力系统规划建设的量化评估与分析[J].南方电网技术,2024,18(10):40-53. |
HE Y H, GUAN L, WANG T,et al .Quantitative evaluation and analysis of planning and construction of the new power system in China southern power grid[J].Southern Power System Technology,2024,18(10):40-53. | |
22 | CHEN X Y, LV J J, MCELROY M B,et al .Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies[J].IEEE Transactions on Power Systems,2018,33(6):6240-6253. doi:10.1109/tpwrs.2018.2827003 |
23 | DU E S, ZHANG N, HODGE B M,et al .The role of concentrating solar power toward high renewable energy penetrated power systems[J].IEEE Transactions on Power Systems,2018,33(6):6630-6641. doi:10.1109/tpwrs.2018.2834461 |
24 | DVORKIN Y, WANG Y S, PANDZIC H,et al .Comparison of scenario reduction techniques for the stochastic unit commitment[C]//2014 IEEE PES General Meeting | Conference & Exposition.National Harbor,MD,USA:IEEE,2014:1-5. doi:10.1109/pesgm.2014.6939042 |
25 | SUN M, TENG F, KONSTANTELOS I,et al .An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources[J].Energy,2018,145:871-885. doi:10.1016/j.energy.2017.12.154 |
26 | FITIWI D Z, DE CUADRA F, OLMOS L,et al .A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty[J].Energy,2015,90:1360-1376. doi:10.1016/j.energy.2015.06.078 |
27 | PLOUSSARD Q, OLMOS L, RAMOS A .An operational state aggregation technique for transmission expansion planning based on line benefits[J].IEEE Transactions on Power Systems,2017,32(4):2744-2755. doi:10.1109/tpwrs.2016.2614368 |
28 | CHEN Y X .Energy system operation and planning with data analytics:toward a reliable,economic,and environmental-friendly future[D].Hong Kong:The University of Hong Kong. 2023. |
29 | PISTIKOPOULOS E N, DIANGELAKIS N A, OBERDIECK R .Multi-parametric optimization and control[M].New York:John Wiley & Sons,2020:19-106. |
30 | HUSH .Classification with neural networks:a performance analysis[C]//IEEE 1989 International Conference on Systems Engineering.Fairborn,OH,USA:IEEE,1989:277-280. doi:10.1109/ICSYSE.1989.48672 |
31 | FÉRAUD R, CLÉROT F .A methodology to explain neural network classification[J].Neural Networks,2002,15(2):237-246. doi:10.1016/s0893-6080(01)00127-7 |
32 | CERISOLA S .Benders decomposition for mixed integer problems:application to a medium term hydrothermal coordination model[D].Madrid,Spain:Universidad Pontificia Comillas,2004. |
33 | PALMINTIER B S, WEBSTER M D .Heterogeneous unit clustering for efficient operational flexibility modeling[J].IEEE Transactions on Power Systems,2014,29(3):1089-1098. doi:10.1109/tpwrs.2013.2293127 |
34 | DU E S, ZHANG N, KANG C Q,et al .A high-efficiency network-constrained clustered unit commitment model for power system planning studies[J].IEEE Transactions on Power Systems,2019,34(4):2498-2508. doi:10.1109/tpwrs.2018.2881512 |
35 | MEUS J, PONCELET K, DELARUE E .Applicability of a clustered unit commitment model in power system modeling[J].IEEE Transactions on Power Systems,2018,33(2):2195-2204. doi:10.1109/tpwrs.2017.2736441 |
36 | 何小龙,高红均,黄媛,等 .基于一维卷积和图神经网络的配电网故障区段定位方法[J].电力系统保护与控制,2024,52(17):27-39. |
HE X L, GAO H J, HUANG Y,et al .Fault section location for a distribution network based on one-dimensional convolution and graph neural networks[J].Power System Protection and Control,2024,52(17):27-39. | |
37 | 郭创新,刘祝平,刘永刚,等 .基于图神经网络和强化学习的电网风险态势感知[J].电网与清洁能源,2023,39(12):41-49. |
GUO C X, LIU Z P, LIU Y G,et al .GNN and RL based power system risk situation perception[J].Power System and Clean Energy,2023,39(12):41-49. | |
38 | 曾泰元 .考虑电压等级及社团分区的电网演化模型研究[D].湘潭:湘潭大学,2019. |
ZENG T Y .Research on the power grid evolution model considering voltage levels and community partitioning[D].Xiangtan:Xiangtan University,2019. | |
39 | 丁明,韩平平 .加权拓扑模型下的小世界电网脆弱性评估[J].中国电机工程学报,2008,28(10):20-25. |
DING M, HAN P P .Vulnerability assessment to small-world power grid based on weighted topological model[J].Proceedings of the CSEE,2008,28(10):20-25. | |
40 | ZHOU J Y, LIU L, WEI W Q,et al .Network representation learning:from preprocessing,feature extraction to node embedding[J].ACM Computing Surveys,2023,55(2):1-35. doi:10.1145/3491206 |
41 | PEI H B, WEI B Z, CHANG K C,et al .Geom-GCN:geometric graph convolutional networks[EB/OL].(2020-02-13)[2024-12-04].. |
42 | 张艺涵,杨萌,刘军会,等 .基于时间图卷积网络的短期电力负荷时空预测方法[J].电网与清洁能源,2024,40(12):27-35. |
ZHANG Y H, YANG M, LIU J H,et al .A short-term spatial-temporal power load forecasting method based on temporal graph convolution network[J].Power System and Clean Energy,2024,40(12):27-35. | |
43 | 谢宏,张华赢,梁晓锐,等 .基于关系图卷积神经网络的新能源配电台区拓扑识别方法[J].电测与仪表,2024,61(7):94-102. |
XIE H, ZHANG H Y, LIANG X R,et al .A topology identification method based on relational-graph convolutional network for distribution substation area with high renewables[J].Electrical Measurement & Instrumentation,2024,61(7):94-102. | |
44 | 杜东来,韩松,荣娜 .基于时空图卷积网络和自注意机制的频率稳定性预测[J].电工技术学报,2024,39(16):4985-4995. |
DU D L, HAN S, RONG N .Frequency stability prediction method based on modified spatial temporal graph convolutional networks and self-attention[J].Transactions of China Electrotechnical Society,2024,39(16):4985-4995. | |
45 | DING Y B, WU H Y, XU Z,et al .GraphSAGE-based probabilistic optimal power flow in distribution system[C]//2023 International Conference on Power System Technology (PowerCon).Jinan,China:IEEE,2023:1-5. doi:10.1109/powercon58120.2023.10331518 |
46 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A,et al .Graph attention networks[EB/OL].(2017-10-30)[2024-12-04].. |
47 | BERAHMAND K, LI Y F, XU Y .A deep semi-supervised community detection based on point-wise mutual information[J].IEEE Transactions on Computational Social Systems,2024,11(3):3444-3456. doi:10.1109/tcss.2023.3327810 |
48 | ZHAN X H, XIE J H, LIU Z W,et al .Online deep clustering for unsupervised representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,WA,USA:IEEE,2020:6687-6696. doi:10.1109/cvpr42600.2020.00672 |
49 | XIE J Y, GIRSHICK R B, FARHADI A .Unsupervised deep embedding for clustering analysis[C]//International Conference on Machine Learning.New York,USA:PMLR,2016:478-487. doi:10.1007/978-3-319-46493-0_51 |
50 | LI P, GAO J, ZHANG J N,et al .Deep reinforcement clustering[J].IEEE Transactions on Multimedia,2022,25:8183-8193. doi:10.1109/tmm.2022.3233249 |
51 | PAIM E C, BAZZAN A L C, CHIRA C .Detecting communities in networks:a decentralized approach based on multiagent reinforcement learning[C]//2020 IEEE Symposium Series on Computational Intelligence (SSCI).Canberra,ACT,Australia:IEEE,2020:2225-2232. doi:10.1109/ssci47803.2020.9308197 |
52 | ARDAKANI A J, BOUFFARD F .Identification of umbrella constraints in DC-based security-constrained optimal power flow[J].IEEE Transactions on Power Systems,2013,28(4):3924-3934. doi:10.1109/tpwrs.2013.2271980 |
53 | CARON R J, MCDONALD J F, PONIC C M .A degenerate extreme point strategy for the classification of linear constraints as redundant or necessary[J].Journal of Optimization Theory and Applications,1989,62(2):225-237. doi:10.1007/bf00941055 |
54 | IOSLOVICH I .Robust reduction of a class of large-scale linear programs[J].SIAM Journal on Optimization,2001,12(1):262-282. doi:10.1137/s1052623497325454 |
55 | SUMATHI P, PAULRAJ S .Identification of redundant constraints in large scale linear programming problems with minimal computational effort[J].Applied Mathematical Sciences,2013,7:3963-3974. doi:10.12988/ams.2013.36325 |
56 | MA Z M, ZHONG H W, CHENG T,et al .Redundant and nonbinding transmission constraints identification method combining physical and economic insights of unit commitment[J].IEEE Transactions on Power Systems,2021,36(4):3487-3495. doi:10.1109/tpwrs.2020.3049001 |
57 | JIMÉNEZ-CORDERO A, MORALES J M, PINEDA S .Warm-starting constraint generation for mixed-integer optimization:a machine learning approach[J].Knowledge-Based Systems,2022,253:109570. doi:10.1016/j.knosys.2022.109570 |
58 | PINEDA S, MORALES J M, JIMÉNEZ-CORDERO A .Data-driven screening of network constraints for unit commitment[J].IEEE Transactions on Power Systems,2020,35(5):3695-3705. doi:10.1109/tpwrs.2020.2980212 |
59 | HE X, WEN H L, ZHANG Y F,et al .Fast unit commitment constraint screening with learning-based cost model[C]//2024 IEEE International Conference on Communications,Control,and Computing Technologies for Smart Grids (SmartGridComm).Oslo,Norway:IEEE,2024:295-300. doi:10.1109/smartgridcomm60555.2024.10738113 |
60 | 高倩,杨知方,李文沅,等 .分支定界搜索信息深度引导的电-气互联系统调度决策加速求解方法[J].电工技术学报,2024,39(13):3990-4002. |
GAO Q, YANG Z F, LI W Y,et al .Dispatch acceleration of integrated electricity and gas system using branch-and-bound search information[J].Transactions of China Electrotechnical Society,2024,39(13):3990-4002. | |
61 | ACHTERBERG T, KOCH T, MARTIN A .Branching rules revisited[J].Operations Research Letters,2005,33(1):42-54. doi:10.1016/j.orl.2004.04.002 |
62 | ECKSTEIN J, NEDIAK M .Pivot,cut,and dive:a heuristic for 0-1 mixed integer programming[J].Journal of Heuristics,2007,13(5):471-503. doi:10.1007/s10732-007-9021-7 |
63 | NAIR V, BARTUNOV S, GIMENO F,et al .Solving mixed integer programs using neural networks[EB/OL].(2020-12-23)[2024-12-04].. |
64 | DING J Y, ZHANG C, SHEN L,et al .Accelerating primal solution findings for mixed integer programs based on solution prediction[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(2):1452-1459. doi:10.1609/aaai.v34i02.5503 |
65 | XAVIER Á S, QIU F, AHMED S .Learning to solve large-scale security-constrained unit commitment problems[J].INFORMS Journal on Computing,2021:33(2).739-756. |
66 | ETHEVE M, ALÈS Z, BISSUEL C,et al .Reinforcement learning for variable selection in a branch and bound algorithm[C]//Integration of Constraint Programming,Artificial Intelligence,and Operations Research.Cham:Springer International Publishing,2020:176-185. doi:10.1007/978-3-030-58942-4_12 |
67 | TANG Y, AGRAWAL S, FAENZA Y .Reinforcement learning for integer programming:learning to cut[C]//International Conference on Machine Learning.New York,USA:PMLR,2020:9367-9376. |
[1] | 徐浩然, 张瑾昀, 马歆, 雷文强, 曹杰铭. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46(3): 454-466. |
[2] | 张祖菡, 刘敦楠, 凡航, 杨柳青, 段赟杰, 李赟, 马振宇. 基于大语言模型的电力系统预测技术研究综述[J]. 发电技术, 2025, 46(3): 438-453. |
[3] | 张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437. |
[4] | 郑杨, 任禹丞, 王雨薇, 徐丁吉, 杨慧敏. 基于改进云模型的区域电网电能替代综合效益评价[J]. 发电技术, 2025, 46(2): 399-408. |
[5] | 兰国芹, 陆烨, 阚严生, 张继广, 王欢欢, 钟芳, 王承才, 肖黎明, 王照阳. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46(1): 19-30. |
[6] | 肖白, 赵雪纯, 董光德. 电能质量综合评估方法综述与展望[J]. 发电技术, 2024, 45(4): 716-733. |
[7] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[8] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[9] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[10] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[11] | 杜将武, 唐小强, 罗志伟, 刘敦楠, 陈积旭, 徐尔丰, 毕圣. 面向综合能源园区的丰枯电价定价方法[J]. 发电技术, 2023, 44(2): 261-269. |
[12] | 董宸, 吴强, 黄河, 章锐, 杨秀媛. 基于免疫算法的电网拓扑结构识别[J]. 发电技术, 2023, 44(1): 125-135. |
[13] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
[14] | 高骞, 杨俊义, 洪宇, 孙小磊, 朱前进, 俞天, 王鑫, 王琳媛, 李泽森. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术, 2022, 43(6): 851-859. |
[15] | 李建林, 丁子洋, 刘海涛, 杨夯. 构网型储能变流器及控制策略研究[J]. 发电技术, 2022, 43(5): 679-686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||