发电技术 ›› 2025, Vol. 46 ›› Issue (3): 467-481.DOI: 10.12096/j.2096-4528.pgt.25071

• AI在新型电力系统中的应用 • 上一篇    

人工智能在电力系统运行模拟加速中的应用综述

陈艺璇1,2, 王嘉阳1,2, 卓映君1,2, 卢斯煜1,2, 周保荣1,2   

  1. 1.南方电网科学研究院有限责任公司,广东省 广州市 510663
    2.直流输电技术全国重点实验室,广东省 广州市 510663
  • 收稿日期:2025-02-05 修回日期:2025-05-01 出版日期:2025-06-30 发布日期:2025-06-16
  • 作者简介:陈艺璇(1994),女,博士,研究员,研究方向为AI在电力系统运行和规划中的应用,以及多目标优化,chenyx7@csg.cn
    王嘉阳(1988),男,博士,高级工程师,研究方向为电力系统运行模拟、水电系统优化调度,jiayang_wang@163.com
    卓映君(1996),女,硕士,研究员,研究方向为新能源电力系统规划、电力系统调度优化,zhuoyj@csg.cn
    卢斯煜(1987),男,博士,教授级高级工程师,研究方向为新能源电力系统规划、电力系统调度优化、新能源功率预测,lusy@csg.cn
    周保荣(1974),男,博士,教授级高级工程师,研究方向为新能源电力系统规划、电力系统调度优化、新能源功率预测,zhoubr@csg.cn
  • 基金资助:
    国家自然科学基金项目(U22B6007);南方电网公司科技项目(ZBKJXM20240140)

Review of Artificial Intelligence Applications in Accelerating Operational Simulation of Power Systems

Yixuan CHEN1,2, Jiayang WANG1,2, Yingjun ZHUO1,2, Siyu LU1,2, Baorong ZHOU1,2   

  1. 1.Southern Power Grid Electric Power Research Institute Co. , Ltd. , Guangzhou 510663, Guangdong Province, China
    2.National Key Laboratory of DC Transmission Technology, Guangzhou 510663, Guangdong Province, China
  • Received:2025-02-05 Revised:2025-05-01 Published:2025-06-30 Online:2025-06-16
  • Supported by:
    National Natural Science Foundation of China(U22B6007);China Southern Power Grid Science and Technology Project(ZBKJXM20240140)

摘要:

目的 随着新能源渗透率不断攀升,亟需通过精细化的时序运行模拟进行电力电量平衡分析、规划方案设计及市场机制评估。然而,由于新能源的随机性、波动性,以及电网规模的不断扩大,运行模拟面临着计算速度与精度难以兼顾的困境,而人工智能(artificial intelligence,AI)因其强大的表征、泛化及自学习能力,为解决当前难题提供了新的工具和思路。为此,系统性地分析了AI在电力系统运行模拟加速中应用的现状和必要性,并对未来发展进行了展望。 方法 首先,从数学角度将加速方法的思路划分为场景聚类、机组聚合、约束缩减及算法加速;其次,深入分析了各个方向上AI 应用的必要性,回答了“为什么需要AI”这一关键问题;然后,系统性地总结了AI应用于运行模拟加速的现状及优势;最后,给出了AI在电力系统中的应用场景建议及未来展望。 结论 AI可以在多个方面为运行模拟加速提供有效支持,尤其是在处理非线性关联关系、替代专家经验、刻画模糊规则时展现出显著优势。

关键词: 新型电力系统, 人工智能(AI), 运行模拟, 机组聚合, 场景聚类, 冗余约束删除, 算法加速, 机器学习

Abstract:

Objectives With the rising penetration of renewable energy, it is imperative to conduct power and energy balance analysis, design planning schemes, and evaluate market mechanisms through detailed time-series operational simulation. However, due to the randomness and volatility of renewable energy and the continuous expansion of power grid, operational simulation faces challenges in balancing computational speed and accuracy. Artificial intelligence (AI), with its exceptional abilities in representation, generalization, and self-learning, provides new solutions to the current challenges. Therefore, the current status and necessity of the application of AI in accelerating the operational simulation of power systems are systematically analyzed, and the future development is prospected. Methods First, from a mathematical perspective, the concepts of acceleration methods are classified into scenario aggregation, unit aggregation, constraint reduction, and algorithm acceleration. Second, the necessity of applying AI across different aspects is thoroughly analyzed, addressing the crucial question of “why AI is needed”. Then, current AI applications in accelerating operational simulation and their advantages are systematically summarized. Finally, recommended AI application scenarios in power systems and future prospects are presented. Conclusions AI can provide effective support for accelerating operational simulation from multiple aspects. It shows particular strengths in handling non-linear correlations, substituting expert experience, and characterizing fuzzy rules.

Key words: new-type power system, artificial intelligence (AI), operational simulation, unit aggregation, scenario clustering, redundant constraint deletion, algorithm acceleration, machine learning

中图分类号: