发电技术 ›› 2025, Vol. 46 ›› Issue (3): 454-466.DOI: 10.12096/j.2096-4528.pgt.25084
• AI在新型电力系统中的应用 • 上一篇
徐浩然1, 张瑾昀1, 马歆1, 雷文强2, 曹杰铭2
收稿日期:
2025-02-17
修回日期:
2025-04-30
出版日期:
2025-06-30
发布日期:
2025-06-16
通讯作者:
雷文强
作者简介:
基金资助:
Haoran XU1, Jinyun ZHANG1, Xin MA1, Wenqiang LEI2, Jieming CAO2
Received:
2025-02-17
Revised:
2025-04-30
Published:
2025-06-30
Online:
2025-06-16
Contact:
Wenqiang LEI
Supported by:
摘要:
目的 为应对新型核电系统在保障能源供应、推动清洁能源转型及实现“双碳”目标过程中面临的结构多样化、负荷不确定性、数据复杂性等挑战,并解决大语言模型应用于核电领域时存在的知识局限性、幻觉及推理成本高等问题,研究了大语言模型与知识图谱结合,特别是图检索增强生成(graph retrieval-augmented generation,GRAG)技术的应用潜力,以构建更智能、高效、可靠的核电系统信息处理能力。 方法 分析了大语言模型与知识图谱在核电领域的研究现状、各自优缺点及结合的互补性;重点介绍了GRAG技术相较于传统检索增强生成(retrieval-augmented generation,RAG)技术的优势,并探讨了其在核电风险评估、智能问答辅助、知识管理与决策支持、故障诊断与预测等场景的具体应用;梳理了引入并微调大语言模型、构建领域知识图谱、实现GRAG增强的技术路径。最后,从混杂数据下的知识图谱构建、大语言模型认知推理与决策、人机交互可控性等方面对未来研究进行了展望。 结论 结合知识图谱的GRAG技术能有效缓解大语言模型在专业领域的知识局限性和幻觉问题,增强生成内容的可解释性与可靠性。研究结果可为未来优化核电领域知识图谱的构建、提升大语言模型在复杂推理任务中的能力、开发与核电领域专家高效互动的人工智能体提供参考。
中图分类号:
徐浩然, 张瑾昀, 马歆, 雷文强, 曹杰铭. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46(3): 454-466.
Haoran XU, Jinyun ZHANG, Xin MA, Wenqiang LEI, Jieming CAO. Applications and Prospects of Graph Retrieval-Augmented Generation Technology Based on Large Language Models in the Nuclear Power Field[J]. Power Generation Technology, 2025, 46(3): 454-466.
类型 | 优点 | 缺点 |
---|---|---|
大语言模型 | 通用知识覆盖广,泛化能力强 | 存在黑箱、幻觉问题,缺乏专业性 |
知识图谱 | 领域知识组织结构清晰,可解释性强,推理能力突出 | 存在不完备性,缺乏语言理解能力,泛化能力不足 |
表1 大语言模型和知识图谱对比
Tab. 1 Comparison of large language models and knowledge graphs
类型 | 优点 | 缺点 |
---|---|---|
大语言模型 | 通用知识覆盖广,泛化能力强 | 存在黑箱、幻觉问题,缺乏专业性 |
知识图谱 | 领域知识组织结构清晰,可解释性强,推理能力突出 | 存在不完备性,缺乏语言理解能力,泛化能力不足 |
1 | 国家能源局 .新型电力系统发展蓝皮书[EB/OL].(2023-06-02)[2025-01-25].. |
National Energy Administration .Blue book of new power system development[EB/OL].(2023-06-02)[2025-01-25].. | |
2 | 高骞,杨俊义,洪宇,等 .新型电力系统背景下电网发展业务数字化转型架构及路径研究[J].发电技术,2022,43(6):851-859. doi:10.12096/j.2096-4528.pgt.21124 |
GAO Q, YANG J Y, HONG Y,et al .Research on digital transformation architecture and path of power grid development planning business under new power system blueprint[J].Power Generation Technology,2022,43(6):851-859. doi:10.12096/j.2096-4528.pgt.21124 | |
3 | 钟成,翟迪,陆阳,等 .城市电网本地通信网络数字化感知业务与通信技术适配研究[J].中国电力,2023,56(8):86-98. |
ZHONG C, ZHAI D, LU Y,et al .Adaptation of digital perception service and communication technologies for local communication network of urban grid[J].Electric Power,2023,56(8):86-98. | |
4 | 郭娟娟,沈迪,童朴,等 .中国三代核电经济评价方法与参数优化[J].中国电力,2024,57(3):206-212. |
GUO J J, SHEN D, TONG P,et al .Economic evaluation method and parameter optimization for ThirdGeneration nuclear power in China[J].Electric Power,2024,57(3):206-212. | |
5 | 邵尤慎,梁玉生,郭维,等 .电力系统多应用场景统一平台的研究与建设[J].电工技术,2024(16):203-208. |
SHAO Y S, LIANG Y S, GUO W,et al .Development and construction of multi-scenario-integrated platform for power systems[J].Electric Engineering,2024(16):203-208. | |
6 | 冯拓宇,李伟平,郭庆浪,等 .大语言模型增强的知识图谱问答研究进展综述[J].计算机科学与探索,2024,18(11):2887-2900. |
FENG T Y, LI W P, GUO Q L,et al .Overview of knowledge graph question answering enhanced by large language models[J].Journal of Frontiers of Computer Science and Technology,2024,18(11):2887-2900. | |
7 | 林向阳 .人工智能引领未来:大语言模型在电力系统中的创新应用[J].新一代信息技术,2023(24):29-34. |
LIN X Y .Artificial intelligence leads the future:innovative applications of big language modeling in power systems[J].New Generation of Information Technology,2023(24):29-34. | |
8 | JI Z W, LEE N, FRIESKE R,et al .Survey of hallucination in natural language generation[J].ACM Computing Surveys,2023,55(12):1-38. doi:10.1145/3571730 |
9 | 杨虹,孟晓凯,俞华,等 .基于BERT模型的主设备缺陷诊断方法研究[J].电力系统保护与控制,2025,53(7):155-164. |
YANG H, MENG X K, YU H,et al .Research on primary equipment defect diagnosis method based on the BERT model[J].Power System Protection and Control,2025,53(7):155-164. | |
10 | 高海翔,苗璐,刘嘉宁,等 .知识图谱及其在电力系统中的应用研究综述[J].广东电力,2020,33(9):66-76. |
GAO H X, MIAO L, LIU J N,et al .Review on knowledge graph and its application in power systems[J].Guangdong Electric Power,2020,33(9):66-76. | |
11 | ZHAO P H, ZHANG H L, YU Q H,et al .Retrieval-augmented generation for AI-generated content:a survey[EB/OL].(2024-02-29)[2025-01-25].. |
12 | 曹祎,张莉,郭静,等 .基于大语言模型的低碳电力市场发展应用前景[J].智慧电力,2024,52(2):8-16. |
CAO Y, ZHANG L, GUO J,et al .Prospects for development of low-carbon electricity markets based on large language models[J].Smart Power,2024,52(2):8-16. | |
13 | GE Y, HUA W, MEI K,et al .Openagi:when LLM meets domain experts[J].Advances in Neural Information Processing Systems,2023,36:5539-5568. |
14 | 丁俐夫,陈颖,肖谭南,等 .基于大语言模型的新型电力系统生成式智能应用模式初探[J].电力系统自动化,2024,48(19):1-13. |
DING L F, CHEN Y, XIAO T N,et al .Exploration of generative intelligent application mode for new power systems based on large language models[J].Automation of Electric Power Systems,2024,48(19):1-13. | |
15 | 胡杰,许刚,齐立忠,等 .基于知识图谱的输变电工程辅助评审系统架构及关键技术分析[J].电力建设,2023,44(11):104-112. |
HU J, XU G, QI L Z,et al .Architecture and key technology analysis of power transmission and transformation engineering auxiliary recheck system based on knowledge graph[J].Electric Power Construction,2023,44(11):104-112. | |
16 | CHEN X J, JIA S B, XIANG Y .A review:knowledge reasoning over knowledge graph[J].Expert Systems with Applications,2020,141:112948. doi:10.1016/j.eswa.2019.112948 |
17 | 曾丽君,刘玉玺 .电力数据的知识图谱构建及典型应用[J].中国新通信,2024,26(3):80-82. |
ZENG L J, LIU Y X .Construction of knowledge map of power data and its typical application[J].China New Telecommunications,2024,26(3):80-82. | |
18 | 王鑫,邹磊,王朝坤,等 .知识图谱数据管理研究综述[J].软件学报,2019,30(7):2139-2174. |
WANG X, ZOU L, WANG C K,et al .Research on knowledge graph data management:a survey[J].Journal of Software,2019,30(7):2139-2174. | |
19 | 刘津,杜宁,徐菁,等 .知识图谱在电力领域的应用与研究[J].电力信息与通信技术,2020,18(1):60-66. |
LIU J, DU N, XU J,et al .Application and research of knowledge graph in electric power field[J].Electric Power Information and Communication Technology,2020,18(1):60-66. | |
20 | 张金营,王哲峰,谢华,等 .基于知识图谱与大语言模型的电力行业知识检索分析系统研发与应用[J].中国电力,2024,57(12):198-205. |
ZHANG J Y, WANG Z F, XIE H,et al .Development and application of a knowledge retrieval and analysis system for the power industry based on knowledge graph and large language model[J].Electric Power,2024,57(12):198-205. | |
21 | PENG B C, ZHU Y, LIU Y C,et al .Graph retrieval-augmented generation:a survey[EB/OL].(2024-08-15)[2025-01-25].. |
22 | PAN S R, LUO L H, WANG Y F,et al .Unifying large language models and knowledge graphs:a roadmap[J].IEEE Transactions on Knowledge and Data Engineering,2024,36(7):3580-3599. doi:10.1109/tkde.2024.3352100 |
23 | 赵俊华,文福拴,黄建伟,等 .基于大语言模型的电力系统通用人工智能展望:理论与应用[J].电力系统自动化,2024,48(6):13-28. |
ZHAO J H, WEN F S, HUANG J W,et al .Prospect of artificial general intelligence for power systems based on large language model:theory and applications[J].Automation of Electric Power Systems,2024,48(6):13-28. | |
24 | BOX G E P, PIERCE D A .Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[J].Journal of the American Statistical Association,1970,65(332):1509-1526. doi:10.1080/01621459.1970.10481180 |
25 | ADITYA SATRIO C B, DARMAWAN W, NADIA B U,et al .Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET[J].Procedia Computer Science,2021,179:524-532. doi:10.1016/j.procs.2021.01.036 |
26 | 陈昱,丁鸿,崔勇,等 .变电设备温度态势感知及辅助决策系统方案研究[J].发电技术,2024,45(4):744-752. |
CHEN Y, DING H, CUI Y,et al .Research on temperature situation awareness and auxiliary decision-making system scheme of substation equipment[J].Power Generation Technology,2024,45(4):744-752. | |
27 | 李甲祎,赵兵,刘宣,等 .基于DWT-Informer的台区短期负荷预测[J].电测与仪表,2024,61(3):160-166. |
LI J Y, ZHAO B, LIU X,et al .Short-term substation load forecasting based on DWT-Informer model[J].Electrical Measurement & Instrumentation,2024,61(3):160-166. | |
28 | 姚福星,苗世洪,涂青宇,等 .考虑强对流天气的乡镇配电网树线矛盾风险预警及优化处理[J].电工技术学报,2023,38(22):6188-6203. |
YAO F X, MIAO S H, TU Q Y,et al .Risk warning and optimization processing for tree-line contradiction in rural distribution network considering severe convective weather[J].Transactions of China Electrotechnical Society,2023,38(22):6188-6203. | |
29 | JIN M, WANG S Y, MA L T,et al .Time-LLM:time series forecasting by reprogramming large language models[EB/OL].(2023-10-03)[2025-01-25].. doi:10.1007/979-8-8688-1276-7_4 |
30 | LAN Y S, HE F L, JIANG J H,et al .A Survey on complex knowledge base question answering: methods, challenges and solutions[EB/OL].(2021-05-25) [2025-01-08].. doi:10.24963/ijcai.2021/611 |
31 | NASSIRI K, AKHLOUFI M .Transformer models used for text-based question answering systems[J].Applied Intelligence,2023,53(9):10602-10635. doi:10.1007/s10489-022-04052-8 |
32 | 蒲天骄,谈元鹏,彭国政,等 .电力领域知识图谱的构建与应用[J].电网技术,2021,45(6):2080-2091. |
PU T J, TAN Y P, PENG G Z,et al .Construction and application of knowledge graph in the electric power field[J].Power System Technology,2021,45(6):2080-2091. | |
33 | 许娜,梁燕翔,王亮,等 .基于知识图谱的煤矿建设安全领域知识管理研究[J].中国安全科学学报,2024,34(5):28-35. |
XU N, LIANG Y X, WANG L,et al .Research on knowledge management in coal mine construction safety field based on knowledge graph[J].China Safety Science Journal,2024,34(5):28-35. | |
34 | 刘沿娟,张栋栋,于海亮,等 .基于知识图谱的电力标准智能问答系统研究[J].电工技术,2024(16):143-146. doi:10.1117/12.3065425 |
LIU Y J, ZHANG D D, YU H L,et al .Knowledge graph-based intelligent Q & A system for power standards[J].Electric Engineering,2024(16):143-146. doi:10.1117/12.3065425 | |
35 | LU Y, WU R J, MUEEN A,et al .Matrix profile XXIV:scaling time series anomaly detection to trillions of datapoints and ultra-fast arriving data streams[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.Washington DC,USA:ACM,2022:1173-1182. doi:10.1145/3534678.3539271 |
36 | 武杰,张安思,吴茂东,等 .知识图谱在装备故障诊断领域的研究与应用综述[J].计算机应用,2024,44(9):2651-2659. |
WU J, ZHANG A S, WU M D,et al .Overview of research and application of knowledge graph in equipment fault diagnosis[J].Journal of Computer Applications,2024,44(9):2651-2659. | |
37 | 李莉,时榕良,郭旭,等 .融合大模型与图神经网络的电力设备缺陷诊断[J].计算机科学与探索,2024,18(10):2643-2655. |
LI L, SHI R L, GUO X,et al .Diagnosis of power system defects by large language models and graph neural networks[J].Journal of Frontiers of Computer Science and Technology,2024,18(10):2643-2655. | |
38 | WEI J,TAY Y, BOMMASANI R S,et al .Emergent abilities of large language models[EB/OL].(2022-06-15) [2025-02-10].. |
39 | ACHIAM J, ADLER S, AGARWAL S,et al .GPT-4 technical report[EB/OL].(2023-03-15) [2025-02-11].. doi:10.2172/973574 |
40 | DUBEY A, JAUHRI A, PANDEY A,et al .The llama 3 herd of models[EB/OL].(2024-07-31) [2025-02-11].. |
41 | YANG A, YANG B, HUI B,et al .Qwen2 technical report[EB/OL].(2024-07-10) [2025-02-11].. |
42 | YAO Y, YU T Y, ZHANG A,et al .MiniCPM-V:a GPT-4V level MLLM on your phone[EB/OL].(2024-08-03)[2025-01-25].. doi:10.21203/rs.3.rs-5830327/v1 |
43 | LI J N, LI D X, SAVARESE S,et al .BLIP-2:bootstrapping language-image pre-training with frozen image encoders and large language models[EB/OL].(2023-01-30)[2025-01-25].. |
44 | LIU X, JI K X, FU Y C,et al .P-tuning v2:prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL].(2021-10-14)[2025-01-25].. doi:10.18653/v1/2022.acl-short.8 |
45 | DETTMERS T, PAGNONI A, HOLTZMAN A,et al. Qlora:efficient finetuning of quantized LLMs[J].Advances in Neural Information Processing Systems,2023,36:10088-10115. |
46 | ZHENG Y W, ZHANG R C, ZHANG J H,et al .LlamaFactory:unified efficient fine-tuning of 100+ language models[EB/OL].(2024-03-20)[2025-01-25].. doi:10.18653/v1/2024.acl-demos.38 |
47 | ZHOU Z X, NING X F, HONG K,et al .A survey on efficient inference for large language models[EB/OL].(2024-04-22)[2025-01-25].. |
48 | KWON W, LI Z H, ZHUANG S Y,et al .Efficient memory management for large language model serving with PagedAttention[C]//Proceedings of the 29th Symposium on Operating Systems Principles.Koblenz, Germany:ACM,2023:611-626. doi:10.1145/3600006.3613165 |
49 | MUNIKOTI S, ACHARYA A, WAGLE S,et al .ATLANTIC:structure-aware retrieval-augmented language model for interdisciplinary science[EB/OL].(2023-11-21)[2025-01-25].. doi:10.18653/v1/2024.sdp-1.8 |
50 | EDGE D, TRINH H, CHENG N,et al .From local to global:a graph RAG approach to query-focused summarization[EB/OL].(2024-04-24)[2025-01-25].. |
51 | GAO Y F, XIONG Y, GAO X Y,et al .Retrieval-augmented generation for large language models:a survey[EB/OL].(2023-12-18)[2025-01-25].. |
52 | SAKR S, AL-NAYMAT G .Graph indexing and querying:a review[J].International Journal of Web Information Systems,2010,6(2):101-120. doi:10.1108/17440081011053104 |
53 | GIUGNO R, SHASHA D .GraphGrep:a fast and universal method for querying graphs[C]//2002 International Conference on Pattern Recognition.QC,Canada:IEEE,2002:112-115. |
54 | YAN X F, YU P S, HAN J W .Graph indexing:a frequent structure-based approach[C]//Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data.Paris,France:ACM,2004:335-346. doi:10.1145/1007568.1007607 |
55 | SAKR S .GraphREL:a decomposition-based and selectivity-aware relational framework for processing sub-graph queries[C]//Database Systems for Advanced Applications.Berlin,Heidelberg:Springer,2009:123-137. doi:10.1007/978-3-642-00887-0_11 |
56 | HE X X, TIAN Y J, SUN Y F,et al .G-retriever:retrieval-augmented generation for textual graph understanding and question answering[EB/OL].(2024-02-12)[2025-02-12].. |
57 | ZHANG B W,SOH H .Extract,define,canonicalize:an LLM-based framework for knowledge graph construction[EB/OL].(2024-04-05)[2025-01-25].. doi:10.18653/v1/2024.emnlp-main.548 |
58 | YANG S, GRIBOVSKAYA E, KASSNER N,et al .Do large language models latently perform multi-hop reasoning?[EB/OL].(2024-02-26)[2025-01-25].. doi:10.18653/v1/2024.acl-long.550 |
59 | ALZETTA F, GIORGINI P, NAJJAR A,et al .In-time explainability in multi-agent systems:challenges,opportunities,and roadmap[C]//Explainable,Trans-parent Autonomous Agents and Multi-Agent Systems.Cham:Springer International Publishing,2020:39-53. doi:10.1007/978-3-030-51924-7_3 |
60 | 周翔,王继业,陈盛,等 .基于深度强化学习的微网优化运行综述[J].全球能源互联网,2023,6(3):240-257. |
ZHOU X, WANG J Y, CHEN S,et al .Review of microgrid optimization operation based on deep reinforcement learning[J].Journal of Global Energy Interconnection,2023,6(3):240-257. | |
61 | 郭创新,刘祝平,刘永刚,等 .基于图神经网络和强化学习的电网风险态势感知[J].电网与清洁能源,2023,39(12):41-49. |
GUO C X, LIU Z P, LIU Y G,et al .GNN and RL based power system risk situation perception[J].Power System and Clean Energy,2023,39(12):41-49. | |
62 | 高琴,徐光虎,夏尚学,等 .基于深度强化学习的电力系统紧急切机稳控策略生成方法[J].电力科学与技术学报,2025,40(1):39-46. |
GAO Q, XU G H, XIA S X,et al .Policy generation method for power system stability control during emergent tripping of unit based on deep reinforcement learning[J].Journal of Electric Power Science and Technology,2025,40(1):39-46. | |
63 | 潘晓杰,胡泽,姚伟,等 .融合电网拓扑信息的分支竞争Q网络智能体紧急切负荷决策[J].电力系统保护与控制,2025,53(8):71-80. |
PAN X J, HU Z, YAO W,et al .Emergency load shedding decision-making using a branching dueling Q-network integrating grid topology information[J].Power System Protection and Control,2025,53(8):71-80. |
[1] | 张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437. |
[2] | 张祖菡, 刘敦楠, 凡航, 杨柳青, 段赟杰, 李赟, 马振宇. 基于大语言模型的电力系统预测技术研究综述[J]. 发电技术, 2025, 46(3): 438-453. |
[3] | 张佳鑫, 彭勇刚, 孙静. 考虑需求响应和碳交易的园区氢电耦合系统两阶段鲁棒优化调度[J]. 发电技术, 2025, 46(2): 252-262. |
[4] | 马恺, 袁至, 李骥. 考虑氢能多元化利用的综合能源系统低碳经济调度[J]. 发电技术, 2025, 46(2): 263-273. |
[5] | 胡山鹰, 金涌, 张臻烨. 发展新质生产力,实现碳中和[J]. 发电技术, 2025, 46(1): 1-8. |
[6] | 刘忠, 周泽华, 邹淑云, 刘圳, 乔帅程. 基于知识蒸馏-卷积神经网络的水轮机空化状态识别方法[J]. 发电技术, 2025, 46(1): 161-170. |
[7] | 王凯卉, 刘斌, 折晓会, 刘伟, 范昊, 康宗耀, 徐礼. 氨氢混合燃烧在旋流燃烧器中的动力学特性与NO x 减排机理研究[J]. 发电技术, 2025, 46(1): 171-179. |
[8] | 兰国芹, 陆烨, 阚严生, 张继广, 王欢欢, 钟芳, 王承才, 肖黎明, 王照阳. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46(1): 19-30. |
[9] | 严新荣, 胡志勇, 张鹏威, 郑成航, 向军, 唐郭安, 刘金亮, 郭剑雄, 黄一博, 于鹏峰, 高翔. 煤电机组运行灵活性提升技术研究与应用[J]. 发电技术, 2024, 45(6): 1074-1086. |
[10] | 赵长红, 张李琳, 邵云姝, 袁家海, 邓祎璐. 发电上市公司低碳信息披露与低碳转型效率研究[J]. 发电技术, 2024, 45(6): 1121-1134. |
[11] | 张崇, 李博, 李笑宇, 刘洪波, 刘永发. 基于虚拟同步机控制参数自适应调节的储能系统调频方法[J]. 发电技术, 2024, 45(4): 772-780. |
[12] | 贾梦涵, 刘刚, 徐世杰, 吴双应. 异构图像融合算法及其在电力设施检测中的应用研究[J]. 发电技术, 2024, 45(3): 558-565. |
[13] | 张安安, 周奇, 李茜, 丁宁, 杨超, 马岩. “双碳”目标下火电厂CO2计量技术研究现状与展望[J]. 发电技术, 2024, 45(1): 51-61. |
[14] | 封钰, 宋佑斌, 金晟, 冯家欢, 史雪晨, 俞永杰, 黄弦超. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J]. 发电技术, 2023, 44(6): 889-895. |
[15] | 唐平. 660 MW核电机组一次调频实验及动态特性仿真分析[J]. 发电技术, 2023, 44(6): 833-841. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||