发电技术 ›› 2025, Vol. 46 ›› Issue (3): 438-453.DOI: 10.12096/j.2096-4528.pgt.24152
• AI在新型电力系统中的应用 • 上一篇
张祖菡1, 刘敦楠1, 凡航1, 杨柳青1, 段赟杰1, 李赟1, 马振宇2
收稿日期:
2024-07-24
修回日期:
2024-10-28
出版日期:
2025-06-30
发布日期:
2025-06-16
通讯作者:
凡航
作者简介:
基金资助:
Zuhan ZHANG1, Dunnan LIU1, Hang FAN1, Liuqing YANG1, Yunjie DUAN1, Yun LI1, Zhenyu MA2
Received:
2024-07-24
Revised:
2024-10-28
Published:
2025-06-30
Online:
2025-06-16
Contact:
Hang FAN
Supported by:
摘要:
目的 随着大规模新能源入网,新型电力系统在对灵活性需求提出一定要求的同时,对预测技术也有了更高的精确性要求,而传统预测方法在处理动态复杂的场景时存在一定局限性,因此,亟需研究适用于新型电力系统的预测技术。大语言模型(large language model,LLM)是一种基于生成式人工智能(artificial intelligence,AI)的技术,具有多模态数据融合、少样本学习、多任务处理的能力,能够为电力系统中的预测任务提供更加智能化和精准化的解决路径。为此,针对LLM在电力系统预测领域的应用现状及优势展开分析。 方法 首先,对LLM的基本架构、训练方法及其应用现状进行阐释;然后,说明了其应用在预测领域的原理及实现过程,并重点探讨了在电力负荷预测、新能源出力预测和电价预测方面的优势和潜力;最后,从数据质量管理、隐私保护及计算资源3个方面分析了目前LLM在预测应用中存在的问题,并给出了可行的解决思路。 结论 通过对比各种预测任务研究发现,与传统预测方法相比,LLM在少样本学习和多模态数据处理方面的强大能力使其更适用于复杂多变的预测场景,对LLM合理有效的应用能够为电力市场预测提供新的解决方案。
中图分类号:
张祖菡, 刘敦楠, 凡航, 杨柳青, 段赟杰, 李赟, 马振宇. 基于大语言模型的电力系统预测技术研究综述[J]. 发电技术, 2025, 46(3): 438-453.
Zuhan ZHANG, Dunnan LIU, Hang FAN, Liuqing YANG, Yunjie DUAN, Yun LI, Zhenyu MA. Review of Power System Prediction Technologies Based on Large Language Models[J]. Power Generation Technology, 2025, 46(3): 438-453.
1 | 王灿,张雅欣 .碳中和愿景的实现路径与政策体系[J].中国环境管理,2020,12(6):58-64. |
WANG C, ZHANG Y X .Implementation pathway and policy system of carbon neutrality vision[J].Chinese Journal of Environmental Management,2020,12(6):58-64. | |
2 | 李灏恩,姜雨萌,宋天立,等 .新型电力系统背景下电力供需平衡特征和保供策略研究[J].电网与清洁能源,2023,39(12):72-78. |
LI H E, JIANG Y M, SONG T L,et al .Research on the characteristics of power supply and demand balance and supply guarantee strategies in the context of new power systems[J].Power System and Clean Energy,2023,39(12):72-78. | |
3 | 汤奕,易俊,薛峰 .“双碳”目标下的新型电力系统规划与运行[J].全球能源互联网,2024,7(3):241-242. |
TANG Y, YI J, XUE F .Planning and operation of new power system under the goal of “dual carbon”[J].Journal of Global Energy Interconnection,2024,7(3):241-242. | |
4 | 高骞,杨俊义,洪宇,等 .新型电力系统背景下电网发展业务数字化转型架构及路径研究[J].发电技术,2022,43(6):851-859. doi:10.12096/j.2096-4528.pgt.21124 |
GAO Q, YANG J Y, HONG Y,et al .Research on digital transformation architecture and path of power grid development planning business under new power system blueprint[J].Power Generation Technology,2022,43(6):851-859. doi:10.12096/j.2096-4528.pgt.21124 | |
5 | 顾靖达,白小会,李伟,等 .新型电力系统变电站绿色低碳技术分析[J].南方能源建设,2024,11(4):111-117. |
GU J D, BAI X H, LI W,et al .Analysis on green and low carbon technologies for new power system substations[J].Southern Energy Construction,2024,11(4):111-117. | |
6 | 王继业,赵俊华 .基于人工智能技术的新型电力系统优化运行与控制[J].全球能源互联网,2023,6(3):238-239. |
WANG J Y, ZHAO J H .Optimal operation and control of new power system based on artificial intelligence technology[J].Journal of Global Energy Interconnection,2023,6(3):238-239. | |
7 | 陈宋宋,王阳,周颖,等 .基于客户用电数据的多时空维度负荷预测综述[J].电网与清洁能源,2023,39(12):28-40. |
CHEN S S, WANG Y, ZHOU Y,et al .A review of multi-time-space load forecasting based on customer electricity consumption data[J].Power System and Clean Energy,2023,39(12):28-40. | |
8 | 赵汉超,从兰美,刘杰,等 .基于EMD-GM-Elman神经网络组合模型的新型电力系统新能源发电量及负荷需求量预测[J].电网与清洁能源,2024,40(10):132-141. |
ZHAO H C, CONG L M, LIU J,et al .Forecasting of the new energy generation and load demand in the novel power system based on EMD-GM-Elman neural network combined model[J].Power System and Clean Energy,2024,40(10):132-141. | |
9 | 朱润泽,王德军 .基于LSTM神经网络的光伏系统功率预测[J].电力科技与环保,2023,39(3):201-206. |
ZHU R Z, WANG D J .Power prediction of photovoltaic system based on LSTM neural network[J].Electric Power Technology and Environmental Protection,2023,39(3):201-206. | |
10 | 郭雪丽,华大鹏,包鹏宇,等 .一种基于改进VMD-PSO-CNN-LSTM的短期电价预测方法[J].电力科学与技术学报,2024,39(2):35-43. |
GUO X L, HUA D P, BAO P Y,et al .A short-term electricity price forecasting method based on improved VMD-PSO-CNN-LSTM[J].Journal of Electric Power Science and Technology,2024,39(2):35-43. | |
11 | 许竞,赵铁军,高小刚,等 .高比例新能源电力系统调节资源灵活性不足风险分析[J].中国电力,2024,57(11):129-138. |
XU J, ZHAO T J, GAO X G,et al .Risk analysis of insufficient flexibility from regulation resources in high proportion renewable energy power systems[J].Electric Power,2024,57(11):129-138. | |
12 | 颜炯,卢生炜,张涛,等 .高比例新能源接入下电网输配电成本多主体分摊模型[J].电力建设,2024,45(1):138-146. |
YAN J, LU S W, ZHANG T,et al .A multi-stakeholder allocation model for transmission and distribution costs of power grid with high renewables[J].Electric Power Construction,2024,45(1):138-146. | |
13 | 张政伟,陈谦,牛应灏,等 .基于实时生成定值的高比例新能源电网自适应电流保护[J].电力建设,2024,45(2):137-146. |
ZHANG Z W, CHEN Q, NIU Y H,et al .Real-time generated protection settings based adaptive current protection for transmission line considering high proportion of new energy source[J].Electric Power Construction,2024,45(2):137-146. | |
14 | 刘洪波,刘珅诚,盖雪扬,等 .高比例新能源接入的主动配电网规划综述[J].发电技术,2024,45(1):151-161. doi:10.12096/j.2096-4528.pgt.22106 |
LIU H B, LIU S C, GAI X Y,et al .Overview of active distribution network planning with high proportion of new energy access[J].Power Generation Technology,2024,45(1):151-161. doi:10.12096/j.2096-4528.pgt.22106 | |
15 | 魏韡,范越,谢睿,等 .平抑高比例新能源发电功率波动的风-光-储容量最优配比[J].电力建设,2023,44(3):138-147. doi:10.12204/j.issn.1000-7229.2023.03.014 |
WEI W, FAN Y, XIE R,et al .Optimal ratio of wind-solar-storage capacity for mitigating the power fluctuations in power system with high penetration of renewable energy power generation[J].Electric Power Construction,2023,44(3):138-147. doi:10.12204/j.issn.1000-7229.2023.03.014 | |
16 | 赵先海,刘晓峰,季振亚,等 .考虑居民用户动态行为的负荷聚合商决策分析[J].中国电力,2024,57(10):179-189. |
ZHAO X H, LIU X F, JI Z Y,et al .Decision analysis of load aggregator considering dynamic behavior of residential users[J].Electric Power,2024,57(10):179-189. | |
17 | 任洪波,王楠,吴琼,等 .考虑阶梯型碳交易的多负荷聚合商协同优化调度与成本分配[J].电力建设,2024,45(2):171-182. |
REN H B, WANG N, WU Q,et al .Collaborative optimal scheduling and cost allocation of multiload aggregator considering ladder-type carbon trading[J].Electric Power Construction,2024,45(2):171-182. | |
18 | 刘金朋,刘胡诗涵,张雨菲,等 .考虑居民用户可调节潜力的负荷聚合商日前投标决策优化模型研究[J].智慧电力,2024,52(2):71-78. |
LIU J P, LIU H S H, ZHANG Y F,et al .Day-ahead bidding decision optimization model of load aggregators considering adjustable potential of residential users[J].Smart Power,2024,52(2):71-78. | |
19 | 艾芊,刘敦楠 .虚拟电厂关键技术与市场机制[J].全球能源互联网,2024,7(4):361-362. |
AI Q, LIU D N .Key technologies and market mechanism of virtual power plants[J].Journal of Global Energy Interconnection,2024,7(4):361-362. | |
20 | 赵建立,向佳霓,汤卓凡,等 .虚拟电厂在上海的实践探索与前景分析[J].中国电力,2023,56(2):1-13. doi:10.11930/j.issn.1004-9649.202208078 |
ZHAO J L, XIANG J N, TANG Z F,et al .Practice exploration and prospect analysis of virtual power plant in Shanghai[J].Electric Power,2023,56(2):1-13. doi:10.11930/j.issn.1004-9649.202208078 | |
21 | 钟永洁,纪陵,李靖霞,等 .虚拟电厂智慧运营管控平台系统框架与综合功能[J].发电技术,2023,44(5):656-666. doi:10.12096/j.2096-4528.pgt.22105 |
ZHONG Y J, JI L, LI J X,et al .System framework and comprehensive functions of intelligent operation management and control platform for virtual power plant[J].Power Generation Technology,2023,44(5):656-666. doi:10.12096/j.2096-4528.pgt.22105 | |
22 | 费熹 .基于时间序列线性数学模型的电力系统短期负荷预测[J].中国高新区,2018(14):30-31. doi:10.1109/powercon.2018.8601585 |
FEI X .Short-term load forecasting of power system based on time series linear mathematical model[J].Science & Technology Industry Parks,2018(14):30-31. doi:10.1109/powercon.2018.8601585 | |
23 | JENDOUBI I, BOUFFARD F .Data-driven sustainable distributed energy resources’ control based on multi-agent deep reinforcement learning[J].Sustainable Energy,Grids and Networks,2022,32:100919. doi:10.1016/j.segan.2022.100919 |
24 | 冯斌,胡轶婕,黄刚,等 .基于深度强化学习的新型电力系统调度优化方法综述[J].电力系统自动化,2023,47(17):187-199. |
FENG B, HU Y J, HUANG G,et al .Review on optimization methods for new power system dispatch based on deep reinforcement learning[J].Automation of Electric Power Systems,2023,47(17):187-199. | |
25 | 张俊,徐箭,许沛东,等 .人工智能大模型在电力系统运行控制中的应用综述及展望[J].武汉大学学报(工学版),2023,56(11):1368-1379. |
ZHANG J, XU J, XU P D,et al .Overview and prospect of application of artificial intelligence large model in power system operation control[J].Engineering Journal of Wuhan University,2023,56(11):1368-1379. | |
26 | TOUVRON H, LAVRIL T, IZACARD G,et al .LLaMA:open and efficient foundation language models[EB/OL].(2023-02-27)[2024-03-14]. . |
27 | CHOWDHERY A, NARANG S R, DEVLIN J,et al .PaLM:scaling language modeling with pathways[J].Journal of Machine Learning Research,2023,24:1532-4435. |
28 | HEGSELMANN S, BUENDIA A, LANG H,et al .Tabllm:few-shot classification of tabular data with large language models[C]//International Conference on Artificial Intelligence and Statistics.Valencia,Spain:PMLR. 2023:5549-5581. |
29 | 曹祎,张莉,郭静,等 .基于大语言模型的低碳电力市场发展应用前景[J].智慧电力,2024,52(2):8-16. |
CAO Y, ZHANG L, GUO J,et al .Prospects for development of low-carbon electricity markets based on large language models[J].Smart Power,2024,52(2):8-16. | |
30 | DEVLIN J, CHANG M W, LEE K,et al .BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].(2019-05-24)[2024-05-23].. doi:10.18653/v1/n18-1 |
31 | VASWANI A, SHAZEER N, PARMAR N,et al .Attention is all you need[C]//31st Conference on Neural Information Processing Systems (NIPS 2017).California,USA:NIPS,2017:1-11. |
32 | JIN M, WANG S Y, MA L T,et al .Time-LLM:time series forecasting by reprogramming large language models[EB/OL].(2024-01-29)[2024-05-23].. doi:10.1007/979-8-8688-1276-7_4 |
33 | TAO C F, HOU L, ZHANG W,et al .Compression of generative pre-trained language models via quantization[EB/OL].(2022-01-16)[2024-05-23].. doi:10.18653/v1/2022.acl-long.331 |
34 | 赵俊华,文福拴,黄建伟,等 .基于大语言模型的电力系统通用人工智能展望:理论与应用[J].电力系统自动化,2024,48(6):13-28. |
ZHAO J H, WEN F S, HUANG J W,et al .Prospect of artificial general intelligence for power systems based on large language model:theory and applications[J].Automation of Electric Power Systems,2024,48(6):13-28. | |
35 | CHUNG H W, HOU L, LONGPRE S,et al .Scaling instruction-finetuned language models[J].Journal of Machine Learning Research,2024,25(70):1-53. |
36 | 丁俐夫,陈颖,肖谭南,等 .基于大语言模型的新型电力系统生成式智能应用模式初探[J].电力系统自动化,2024,48(19):1-13. |
DING L F, CHEN Y, XIAO T N,et al .Preliminary exploration of a new generative intelligent application model for power systems based on large language models[J].Automation of Electric Power Systems,2024,48(19):1-13. | |
37 | 张翼,朱永利 .结合知识蒸馏和图神经网络的局部放电增量识别方法[J].电工技术学报,2023,38(5):1390-1400. |
ZHANG Y, ZHU Y L .Incremental partial discharge recognition method combining knowledge distillation with graph neural network[J].Transactions of China Electrotechnical Society,2023,38(5):1390-1400. | |
38 | 贺才郡,李开成,董宇飞,等 .基于知识蒸馏与RP-MobileNetV3的电能质量复合扰动识别[J].电力系统保护与控制,2023,51(14):75-84. |
HE C J, LI K C, DONG Y F,et al .Power quality compound disturbance identification based on knowledge distillation and RP-MobilenetV3[J].Power System Protection and Control,2023,51(14):75-84. | |
39 | DU Z X, QIAN Y J, LIU X,et al .GLM:general language model pretraining with autoregressive blank infilling[EB/OL].(2022-03-17)[2024-05-23].. doi:10.18653/v1/2022.acl-long.26 |
40 | GRUVER N, FINZI M, QIU S,et al .Large language models are zero-shot time series forecasters[J].Advances in Neural Information Processing Systems,2023,36:19622-19635. |
41 | LIU X H, WANG W M .Deep time series forecasting models:a comprehensive survey[J].Mathematics,2024,12(10):1504. doi:10.3390/math12101504 |
42 | LIN L Q, LI Z K, LI R K,et al .Diffusion models for time-series applications:a survey[J].Frontiers of Information Technology & Electronic Engineering,2024,25(1):19-41. doi:10.1631/fitee.2300310 |
43 | RASUL K, ASHOK A, WILLIAMS A R,et al .Lag-llama:towards foundation models for probabilistic time series forecasting[EB/OL].(2024-02-28)[2024-03-14].. |
44 | GARZA A, CHALLU C, MERGENTHALER-CANSECO M .TimeGPT-1[EB/OL].(2024-05-27)[2024-06-12].. |
45 | 步婷,范蕊,孙可欣,等 .基于机器学习算法的区域建筑负荷预测建模研究[J].建筑科学,2022,38(4):85-96. |
BU T, FAN R, SUN K X,et al .Research on modeling of regional cooling and heating load forecast based on machine learning algorithm[J].Building Science,2022,38(4):85-96. | |
46 | 尹春杰,肖发达,李鹏飞,等 .基于LSTM神经网络的区域微网短期负荷预测[J].计算机与现代化,2022(4):7-11. |
YIN C J, XIAO F D, LI P F,et al .Short-term load forecasting of regional microgrid based on LSTM neural network[J].Computer and Modernization,2022(4):7-11. | |
47 | 吴潇雨,和敬涵,张沛,等 .基于灰色投影改进随机森林算法的电力系统短期负荷预测[J].电力系统自动化,2015,39(12):50-55. |
WU X Y, HE J H, ZHANG P,et al .Power system short-term load forecasting based on improved random forest with grey relation projection[J].Automation of Electric Power Systems,2015,39(12):50-55. | |
48 | MATRENIN P, SAFARALIEV M, DMITRIEV S,et al .Medium-term load forecasting in isolated power systems based on ensemble machine learning models[J].Energy Reports,2022,8:612-618. doi:10.1016/j.egyr.2021.11.175 |
49 | LEE J,REW J .Large language models-based feature extraction for short-term load forecasting[J].Journal of Korea Society of Industrial Information Systems,2024,29(3):51-65. |
50 | GAO M Y, ZHOU S Y, GU W,et al .A general framework for load forecasting based on pre-trained large language model[EB/OL].(2024-09-03)[2024-09-04].. |
51 | XUE H, SALIM F D .Utilizing language models for energy load forecasting[C]//Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings,Cities,and Transportation.Istanbul,Turkey:ACM,2023:224-227. doi:10.1145/3600100.3623730 |
52 | 范培潇,杨军,温裕鑫,等 .基于可进化模型预测控制的含电动汽车多微电网智能发电控制策略[J].电工技术学报,2024,39(3):699-713. |
FAN P X, YANG J, WEN Y X,et al .A multi microgrid intelligent generation control strategy with electric vehicles based on evolutionary model predictive control[J].Transactions of China Electrotechnical Society,2024,39(3):699-713. | |
53 | 姚芳,汤俊豪,陈盛华,等 .基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制,2023,51(16):158-167. |
YAO F, TANG J H, CHEN S H,et al .Charging load prediction method for electric vehicles based on an ISSA-CNN-GRU model[J].Power System Protection and Control,2023,51(16):158-167. | |
54 | 杨洪明,熊脶成,刘保平 .插入式混合电动汽车充放电行为的概率分析[J].电力科学与技术学报,2010,25(3):8-12. |
YANG H M, XIONG L C, LIU B P .Probabilistic analysis of charging and discharging for plug-in hybrid electric vehicles[J].Journal of Electric Power Science and Technology,2010,25(3):8-12. | |
55 | 王浩林,张勇军,毛海鹏 .基于时刻充电概率的电动汽车充电负荷预测方法[J].电力自动化设备,2019,39(3):207-213. |
WANG H L, ZHANG Y J, MAO H P .Charging load forecasting method based on instantaneous charging probability for electric vehicles[J].Electric Power Automation Equipment,2019,39(3):207-213. | |
56 | 李奕杰,宋恒,叶晨晖,等 .基于融合模型驱动和数据驱动的电动汽车充电负荷预测[J].湖南电力,2023,43(3):9-15. |
LI Y J, SONG H, YE C H,et al .EV charging load forecasting based on model driven and data driven[J].Hunan Electric Power,2023,43(3):9-15. | |
57 | 王毅,谷亿,丁壮,等 .基于模糊熵和集成学习的电动汽车充电需求预测[J].电力系统自动化,2020,44(3):114-121. |
WANG Y, GU Y, DING Z,et al .Charging demand forecasting of electric vehicle based on empirical mode decomposition-fuzzy entropy and ensemble learning[J].Automation of Electric Power Systems,2020,44(3):114-121. | |
58 | 宋向峰 .电动汽车出行行为预测及其聚合商优化调度研究[D].郑州:郑州大学,2021. |
SONG X F .Research on electric vehicle travel behavior prediction and optimal scheduling of aggregators[D].Zhengzhou:Zhengzhou University,2021. | |
59 | KOOHFAR S, WOLDEMARIAM W, KUMAR A .Prediction of electric vehicles charging demand:a transformer-based deep learning approach[J].Sustainability,2023,15(3):2105. doi:10.3390/su15032105 |
60 | ANSALDO G .AgentSpeak:a framework for agent-based modeling with integrated large language models;case study:analyzing policy interventions in electric vehicle adoption[D].Boston,MA,USA:Northeastern University,2023. |
61 | FENG J K, CUI C G, ZHANG C L,et al .Large language model based agent framework for electric vehicle charging behavior simulation[EB/OL].(2024-08-03)[2024-09-04].. |
62 | 李鹏,何帅,韩鹏飞,等 .基于长短期记忆的实时电价条件下智能电网短期负荷预测[J].电网技术,2018,42(12):4045-4052. |
LI P, HE S, HAN P F,et al .Short-term load forecasting of smart grid based on long-short-term memory recurrent neural networks in condition of real-time electricity price[J].Power System Technology,2018,42(12):4045-4052. | |
63 | 李宁,撖奥洋,张智晟 .基于Stackelberg博弈实时定价机制的电-气综合能源系统优化调度[J].电力需求侧管理,2023,25(4):80-85. |
LI N, HAN A Y, ZHANG Z S .Optimal dispatching of integrated energy system based on Stackelberg game real-time pricing mechanism[J].Power Demand Side Management,2023,25(4):80-85. | |
64 | 张智晟,于道林 .考虑需求响应综合影响因素的RBF-NN短期负荷预测模型[J].中国电机工程学报,2018,38(6):1631-1638. |
ZHANG Z S, YU D L .RBF-NN based short-term load forecasting model considering comprehensive factors affecting demand response[J].Proceedings of the CSEE,2018,38(6):1631-1638. | |
65 | 王毅,张宁,康重庆,等 .电力用户行为模型:基本概念与研究框架[J].电工技术学报,2019,34(10):2056-2068. |
WANG Y, ZHANG N, KANG C Q,et al .Electrical consumer behavior model:basic concept and research framework[J].Transactions of China Electrotechnical Society,2019,34(10):2056-2068. | |
66 | 苏小林,刘孝杰,阎晓霞,等 .计及需求响应的主动配电网短期负荷预测[J].电力系统自动化,2018,42(10):60-66. |
SU X L, LIU X J, YAN X X,et al .Short-term load forecasting of active distribution network based on demand response[J].Automation of Electric Power Systems,2018,42(10):60-66. | |
67 | 陈张宇,刘东,刘浩文,等 .基于精细化需求响应的虚拟电厂优化调度[J].电网技术,2021,45(7):2542-2550. doi:10.13335/j.1000-3673.pst.2019.2019 |
CHEN Z Y, LIU D, LIU H W,et al .Optimal dispatching of virtual power plant based on refined demand response[J].Power System Technology,2021,45(7):2542-2550. doi:10.13335/j.1000-3673.pst.2019.2019 | |
68 | 周明,聂艳丽,李庚银,等 .基于小波分析的短期电价ARIMA预测方法[J].电网技术,2005,29(9):50-55. |
ZHOU M, NIE Y L, LI G Y,et al .Wavelet analysis based ARIMA hourly electricity prices forecasting approach[J].Power System Technology,2005,29(9):50-55. | |
69 | 魏勤,陈仕军,黄炜斌,等 .利用随机森林回归的现货市场出清价格预测方法[J].中国电机工程学报,2021,41(4):1360-1367. |
WEI Q, CHEN S J, HUANG W B,et al .Forecasting method of clearing price in spot market by random forest regression[J].Proceedings of the CSEE,2021,41(4):1360-1367. | |
70 | 李正欣,赵林度 .基于贝叶斯框架下LS-SVM的时间序列预测模型[J].系统工程理论与实践,2007,27(5):142-146. |
LI Z X, ZHAO L D .Time series prediction based on LS-SVM within the Bayesian framework[J].Systems Engineering-Theory & Practice,2007,27(5):142-146. | |
71 | 许越,李强,崔晖 .基于MIC-EEMD-改进Informer的含高比例清洁能源与储能的电力市场短期电价多步预测[J].电网技术,2024,48(3):949-958. |
XU Y, LI Q, CUI H .Short-term multi-step price prediction for the electricity market with a high proportion of clean energy and energy storage based on MIC-EEMD-improved informer[J].Power System Technology,2024,48(3):949-958. | |
72 | 沈秀汶,吴耀武,熊信银,等 .基于最小最大概率回归方法的中长期电价预测模型[J].中国电力,2007,40(3):1-5. |
SHEN X W, WU Y W, XIONG X Y,et al .The mid-term price forecasting model in electricity market using MPMR[J].Electric Power,2007,40(3):1-5. | |
73 | 范玉宏,张维,丁珩,等 .改进灰色模型预测电力现货与中长期市场价格[J].管理观察,2018(22):45-49. |
FAN Y H, ZHANG W, DING H,et al .Price forecasting of electric power spot,medium and longterm market based on improved grey model[J].Management Observer,2018(22):45-49. | |
74 | 冯长有,王锡凡,王秀丽,等 .电价分布及分类预测模型[J].电力系统自动化,2009,33(6):25-30. |
FENG C Y, WANG X F, WANG X L,et al .Electricity price distribution and classified forecasting model[J].Automation of Electric Power Systems,2009,33(6):25-30. | |
75 | MIRCEA E, CHEN C L, ABDEL-ATY E .Artificial intelligence and computational intelligence:a challenge for power system engineers[J].Advanced Solutions in Power Systems:HVDC,FACTS,and Artificial Intelligence,2016:721-729. doi:10.1002/9781119175391.ch14 |
76 | WANG H Z, LI G Q, WANG G B,et al .Deep learning based ensemble approach for probabilistic wind power forecasting[J].Applied Energy,2017,188:56-70. doi:10.1016/j.apenergy.2016.11.111 |
77 | BRACALE A, CARAMIA P, CARPINELLI G,et al .Day-ahead probabilistic wind power forecasting based on ranking and combining NWPs[J].International Transactions on Electrical Energy Systems,2020,30(7):e12325. doi:10.1002/2050-7038.12325 |
78 | WU T J, LING Q .STELLM:spatio-temporal enhanced pre-trained large language model for wind speed forecasting[J].Applied Energy,2024,375:124034. doi:10.1016/j.apenergy.2024.124034 |
79 | LAI Z F, WU T J, FEI X H,et al .BERT4ST:fine-tuning pre-trained large language model for wind power forecasting[J].Energy Conversion and Management,2024,307:118331. doi:10.1016/j.enconman.2024.118331 |
80 | 叶林,陈政,赵永宁,等 .基于遗传算法-模糊径向基神经网络的光伏发电功率预测模型[J].电力系统自动化,2015,39(16):16-22. |
YE L, CHEN Z, ZHAO Y N,et al .Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J].Automation of Electric Power Systems,2015,39(16):16-22. | |
81 | CARL D .Tutorial on variational autoencoders[EB/OL].(2021-01-16)[2024-05-25].. |
82 | 高岩,吴汉斌,张纪欣,等 .基于组合深度学习的光伏功率日前概率预测模型[J].中国电力,2024,57(4):100-110. |
GAO Y, WU H B, ZHANG J X,et al .Day-ahead probabilistic prediction model for photovoltaic power based on combined deep learning[J].Electric Power,2024,57(4):100-110. | |
83 | 侯庆春,杜尔顺,田旭,等 .数据驱动的电力系统运行方式分析[J].中国电机工程学报,2021,41(1):1-12. |
HOU Q C, DU E S, TIAN X,et al .Data-driven power system operation mode analysis[J].Proceedings of the CSEE,2021,41(1):1-12. | |
84 | MORENO ESCOBAR J J, MORALES MATAMOROS O, TEJEIDA PADILLA R,et al .A comprehensive review on smart grids:challenges and opportunities[J].Sensors,2021,21(21):6978. doi:10.3390/s21216978 |
85 | 廖若愚,刘友波,沈晓东,等 .基于双向循环插补网络的分布式光伏集群时序数据耦合增强方法[J].电网技术,2024,48(7):2784-2794. |
LIAO R Y, LIU Y B, SHEN X D,et al .Time series data coupling enhancement method of distributed photovoltaic cluster based on bidirectional recurrent imputation network[J].Power System Technology,2024,48(7):2784-2794. | |
86 | MAJUMDER S, DONG L, DOUDI F,et al .Exploring the capabilities and limitations of large language models in the electric energy sector[J].JOULE,2024,8(6):1544-1549. doi:10.1016/j.joule.2024.05.009 |
87 | YAO Y F, DUAN J H, XU K D,et al .A survey on large language model (LLM) security and privacy:the good,the bad,and the ugly[J].High-Confidence Computing,2024,4(2):100211. doi:10.1016/j.hcc.2024.100211 |
88 | LI H R, CHEN Y L, LUO J L,et al .Privacy in large language models:attacks,defenses and future directions[EB/OL].(2023-10-16)[2024-05-04].. |
89 | 张政,冯少飞 .大模型算力基础设施技术趋势、关键挑战与发展路径[J].信息通信技术与政策,2024(6):2-9. |
ZHANG Z, FENG S F .Large model computing infrastructure technological trends,key challenges,and development trajectories[J].Information and Communications Technology and Policy,2024(6):2-9. | |
90 | LEE J, DAI Z Y, REN X Q,et al .Gecko:versatile text embeddings distilled from large language models[EB/OL].(2024-03-29)[2024-05-04].. |
91 | SAHA R, SAGAN N M, SRIVASTAVA V,et al .Compressing large language models using low rank and low precision decomposition[EB/OL].(2024-05-29)[2024-05-04].. |
[1] | 张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437. |
[2] | 郑杨, 任禹丞, 王雨薇, 徐丁吉, 杨慧敏. 基于改进云模型的区域电网电能替代综合效益评价[J]. 发电技术, 2025, 46(2): 399-408. |
[3] | 涂伟权, 李辉, 万铮. 基于组合相关系数的综合能源系统多元负荷短期预测研究[J]. 发电技术, 2025, 46(1): 9-18. |
[4] | 兰国芹, 陆烨, 阚严生, 张继广, 王欢欢, 钟芳, 王承才, 肖黎明, 王照阳. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46(1): 19-30. |
[5] | 肖白, 赵雪纯, 董光德. 电能质量综合评估方法综述与展望[J]. 发电技术, 2024, 45(4): 716-733. |
[6] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[7] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[8] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[9] | 封钰, 宋佑斌, 金晟, 冯家欢, 史雪晨, 俞永杰, 黄弦超. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J]. 发电技术, 2023, 44(6): 889-895. |
[10] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[11] | 杜将武, 唐小强, 罗志伟, 刘敦楠, 陈积旭, 徐尔丰, 毕圣. 面向综合能源园区的丰枯电价定价方法[J]. 发电技术, 2023, 44(2): 261-269. |
[12] | 董宸, 吴强, 黄河, 章锐, 杨秀媛. 基于免疫算法的电网拓扑结构识别[J]. 发电技术, 2023, 44(1): 125-135. |
[13] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
[14] | 迟福建, 孙阔, 张章, 张媛, 吴倩. 网格化规划系统中电气计算核心算法的实现[J]. 发电技术, 2022, 43(6): 860-868. |
[15] | 高骞, 杨俊义, 洪宇, 孙小磊, 朱前进, 俞天, 王鑫, 王琳媛, 李泽森. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术, 2022, 43(6): 851-859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||