发电技术 ›› 2025, Vol. 46 ›› Issue (3): 438-453.DOI: 10.12096/j.2096-4528.pgt.24152

• AI在新型电力系统中的应用 • 上一篇    

基于大语言模型的电力系统预测技术研究综述

张祖菡1, 刘敦楠1, 凡航1, 杨柳青1, 段赟杰1, 李赟1, 马振宇2   

  1. 1.华北电力大学经济与管理学院,北京市 昌平区 102206
    2.国家电投集团数字科技有限公司,北京市 昌平区 102209
  • 收稿日期:2024-07-24 修回日期:2024-10-28 出版日期:2025-06-30 发布日期:2025-06-16
  • 通讯作者: 凡航
  • 作者简介:张祖菡(2000),男,硕士研究生,研究方向为电力市场人工智能,zhangzuhan23@163.com
    凡航(1993),男,博士,讲师,主要研究方向为电力技术经济、机器学习等,本文通信作者,fanhang123456@163.com
    马振宇(1988),男,高级工程师,研究方向为电力系统数字化、电力交易和调度,15853158870@163.com
  • 基金资助:
    国家自然科学基金项目(72171082);中央高校基本科研业务费专项资金(2024MS027)

Review of Power System Prediction Technologies Based on Large Language Models

Zuhan ZHANG1, Dunnan LIU1, Hang FAN1, Liuqing YANG1, Yunjie DUAN1, Yun LI1, Zhenyu MA2   

  1. 1.School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China
    2.State Power Investment Group Digital Technology Co. , Ltd. , Changping District, Beijing 102209, China
  • Received:2024-07-24 Revised:2024-10-28 Published:2025-06-30 Online:2025-06-16
  • Contact: Hang FAN
  • Supported by:
    National Natural Science Foundation of China(72171082);Special Funds for Basic Scientific Research Operations of Central Universities(2024MS027)

摘要:

目的 随着大规模新能源入网,新型电力系统在对灵活性需求提出一定要求的同时,对预测技术也有了更高的精确性要求,而传统预测方法在处理动态复杂的场景时存在一定局限性,因此,亟需研究适用于新型电力系统的预测技术。大语言模型(large language model,LLM)是一种基于生成式人工智能(artificial intelligence,AI)的技术,具有多模态数据融合、少样本学习、多任务处理的能力,能够为电力系统中的预测任务提供更加智能化和精准化的解决路径。为此,针对LLM在电力系统预测领域的应用现状及优势展开分析。 方法 首先,对LLM的基本架构、训练方法及其应用现状进行阐释;然后,说明了其应用在预测领域的原理及实现过程,并重点探讨了在电力负荷预测、新能源出力预测和电价预测方面的优势和潜力;最后,从数据质量管理、隐私保护及计算资源3个方面分析了目前LLM在预测应用中存在的问题,并给出了可行的解决思路。 结论 通过对比各种预测任务研究发现,与传统预测方法相比,LLM在少样本学习和多模态数据处理方面的强大能力使其更适用于复杂多变的预测场景,对LLM合理有效的应用能够为电力市场预测提供新的解决方案。

关键词: 大语言模型(LLM), 人工智能(AI), 新型电力系统, 负荷预测, 电价预测, 新能源出力预测, 隐私保护, 数据训练

Abstract:

Objectives With the large-scale integration of renewable energy, new-type power systems require greater flexibility and higher prediction accuracy for prediction technology. Traditional prediction methods have limitations in handling dynamic and complex scenarios, highlighting the need for prediction technologies tailored to these systems. Large language models (LLMs), as generative artificial intelligence technologies, have capabilities in multimodal data integrating, few-shot learning, and multitask handling, enabling more intelligent and precise solutions for the prediction of power systems. Therefore, this study focuses on analyzing the current applications and advantages of LLMs in power system prediction. Methods First, the fundamental architecture, training methods, and current application status of LLMs are discussed. Then, their principles and implementations in prediction are explained, with emphasis on advantages and prospects in load prediction, renewable generation prediction, and electricity price prediction. Finally, challenges in LLM-based prediction applications are analyzed from three aspects: data quality management, privacy protection, and computational resources, and feasible solutions are proposed. Conclusions Through comparative analysis of various forecasting tasks, LLMs demonstrate superior capabilities in few-shot learning and multimodal data processing compared to traditional methods, making them more adaptable to complex and variable prediction scenarios. Effective application of LLMs can provide innovative solutions for electricity market prediction.

Key words: large language model (LLM), artificial intelligence (AI), new-type power system, load prediction, electricity price prediction, renewable energy output prediction, privacy protection, data training

中图分类号: