发电技术 ›› 2025, Vol. 46 ›› Issue (3): 421-437.DOI: 10.12096/j.2096-4528.pgt.24240
• AI在新型电力系统中的应用 •
张俊1, 蒲天骄2, 高文忠1, 刘友波3, 裴玮4, 许沛东1, 高天露1, 白昱阳1
收稿日期:
2024-11-15
修回日期:
2025-02-18
出版日期:
2025-06-30
发布日期:
2025-06-16
作者简介:
基金资助:
Jun ZHANG1, Tianjiao PU2, Wenzhong GAO1, Youbo LIU3, Wei PEI4, Peidong XU1, Tianlu GAO1, Yuyang BAI1
Received:
2024-11-15
Revised:
2025-02-18
Published:
2025-06-30
Online:
2025-06-16
Supported by:
摘要:
目的 随着我国“双碳”目标所驱动的新型电力系统的建设和应用,以高比例可再生能源和高电力电子化等为特征的电力系统展现出前所未有的复杂动态特性,给电力系统安全稳定运行提出新的挑战。电力系统智能计算利用新一代人工智能技术,尤其是大模型技术、预训练技术等,实现了物理模型、数据驱动模型、知识模型的融合,形成了一种新型的电力系统计算分析方法。为此,综述和展望了电力系统智能计算方法和技术在新型电力系统分析、优化、运行、调度、控制等方面的应用。 方法 首先,阐述了电力系统智能计算的概念和关键技术;然后,以电力系统时序预测、安全域优化、多能微网协同优化等关键领域的智能化处理为例阐述了其技术路线;最后,展望了其应用前景。 结论 智能化算法在多个评估指标上优于传统方法,显著提高了电力系统的预测精度和控制效率,验证了智能计算在电力系统计算分析中的应用潜力,为新型电力系统提供了一种有效的智能化技术路线,对于电力系统的智能化发展具有重要意义。
中图分类号:
张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437.
Jun ZHANG, Tianjiao PU, Wenzhong GAO, Youbo LIU, Wei PEI, Peidong XU, Tianlu GAO, Yuyang BAI. Key Technologies and Application Prospects of Intelligent Computing in Power Systems[J]. Power Generation Technology, 2025, 46(3): 421-437.
1 | 国家能源局 .新型电力系统发展蓝皮书[EB/OL].[2024-10-12].. |
National Energy Administration .Blue book of new power system development[EB/OL].[2024-10-12].. | |
2 | 蒲天骄,王新迎,赵琦 .“科学智能”为电力发展按下快进键[J].能源评论,2024(7):66-69. |
PU T J, WANG X Y, ZHAO Q .“AI for Science(AI4S)” press the fast forward key for power development[J].Energy Review,2024(7):66-69. | |
3 | 国家发展改革委,国家能源局,国家数据局 .加快构建新型电力系统行动方案(2024—2027年)[EB/OL].(2024-07-25)[2024-11-06].. |
National Development and Reform Commission,National Energy Administration,National Data Bureau .Action plan for accelerating the construction of new-type power system (2024-2027)[EB/OL].(2024-07-25)[2024-11-06].. | |
4 | YAROTSKY D .Error bounds for approximations with deep ReLU networks[J].Neural Networks,2017,94:103-114. doi:10.1016/j.neunet.2017.07.002 |
5 | 周孝信,陈树勇,鲁宗相,等 .能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904. |
ZHOU X X, CHEN S Y, LU Z X,et al .Technology features of the new generation power system in China[J].Proceedings of the CSEE,2018,38(7):1893-1904. | |
6 | 郭剑波,范士雄,蔡忠闽,等 .大电网调控人机混合增强智能:概念内涵、应用框架、关键技术以及系统验证[J].中国电机工程学报,2024,44(17):6787-6810. |
GUO J B, FAN S X, CAI Z M,et al .Human-machine hybrid-augmented intelligence for power system dispatching:concept connotation,application framework,key technologies and system verification[J].Proceedings of the Chinese Society for Electrical Engineering,2024,44(17):6787-6810. | |
7 | 鄂维南 .AI助力打造科学研究新范式[J].中国科学院院刊,2024,39(1):10-16. |
E W N .AI helps to establish a new paradigm for scientific research[J].Bulletin of Chinese Academy of Sciences,2024,39(1):10-16. | |
8 | WANG H, FU T, DU Y,et al .Scientific discovery in the age of artificial intelligence[J].Nature,2023,620(7972):47-60. doi:10.1038/s41586-023-06221-2 |
9 | BI K, XIE L, ZHANG H,et al .Accurate medium-range global weather forecasting with 3D neural networks[J].Nature,2023,619:533-538. doi:10.1038/s41586-023-06185-3 |
10 | KOCHKOV D, YUVAL J, LANGMORE I,et al .Neural general circulation models for weather and climate[J].Nature,2024,632:1060-1066. doi:10.1038/s41586-024-07744-y |
11 | JUMPER J, EVANS R, PRITZEL A,et al .Highly accurate protein structure prediction with AlphaFold[J].Nature,2021,596:583-589. doi:10.1038/s41586-021-03819-2 |
12 | THORNTON J M, LASKOWSKI R A, BORKAKOTI N .AlphaFold heralds a data-driven revolution in biology and medicine[J].Nature Medicine,2021,27(10):1666-1669. doi:10.1038/s41591-021-01533-0 |
13 | SZYMANSKI N J, RENDY B, FEI Y,et al .An autonomous laboratory for the accelerated synthesis of novel materials[J].Nature,2023,624:86-91. doi:10.1038/s41586-023-06734-w |
14 | 张漫子,黄红华 .AI for Science:科学研究新范式[EB/OL].(2023-05-17)[2024-10-17].. |
ZHANG M Z, HUANG H H .AI for Science:a new paradigm for scientific research[EB/OL].(2023-05-17)[024-10-17].. | |
15 | 张林峰,孙伟杰,李鑫宇,等 .AI4S 全球发展观察与展望[R].北京:2023 科学智能峰会,2023. |
ZHANG L F, SUN W J, LI X Y,et al .AI for science global outlook 2023 edition[R].Beijing:AI for Science Congress,2023. | |
16 | 新华社 .国家电网发布国内首个千亿级多模态电力行业大模型[EB/OL].(2024-12-19)[2024-12-19].. |
Xinhua .State Grid release the first multi-modal power industry model of 100 billion level in China [EB/OL].(2024-12-19)[2024-12-19].. | |
17 | 中国能源新闻网 .全球首款!“大瓦特·驭电”智能仿真大模型将在南方区域应用[EB/OL].(2024-12-18)[2024-12-18].. |
China Energy News Network .The world’s first!“Big Watt·YuDian” intelligent simulation model will be applied in the southern region[EB/OL].(2024-12-18)[2024-12-18].. | |
18 | ZHAO W .A panel discussion on AI for science:the opportunities,challenges and reflections[J].National Science Review,2024,11(8):119. doi:10.1093/nsr/nwae119 |
19 | WEINAN E .AI for Science[J].Collections,2023,56(10):118-127. |
20 | ZHAO H, XU P, GAO T,et al .CPTCFS:CausalPatchTST incorporated causal feature selection model for short-term wind power forecasting of newly built wind farms[J].International Journal of Electrical Power & Energy Systems,2024,160:110059. doi:10.1016/j.ijepes.2024.110059 |
21 | SUN S, LIU Y, LI Q,et al .Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks[J].Energy Conversion and Management,2023,283:116916. doi:10.1016/j.enconman.2023.116916 |
22 | JALALI S M J, AHMADIAN S, KHODAYAR M,et al .An advanced short-term wind power forecasting framework based on the optimized deep neural network models[J].International Journal of Electrical Power & Energy Systems,2022,141:108143. doi:10.1016/j.ijepes.2022.108143 |
23 | LIN Z, LIU X .Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network[J].Energy,2020,201:117693. doi:10.1016/j.energy.2020.117693 |
24 | DUAN J, WANG P, MA W,et al .Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network[J].Energy,2021,214:118980. doi:10.1016/j.energy.2020.118980 |
25 | XIAO J, ZU G, GONG X,et al .Observation of security region boundary for smart distribution grid[J].IEEE Transactions on Smart Grid,2015,8(4):1731-1738. |
26 | NGUYEN H D, DVIJOTHAM K, YU S,et al .A framework for robust long-term voltage stability of distribution systems[J].IEEE Transactions on Smart Grid,2018,10(5):4827-4837. doi:10.1109/tsg.2018.2869032 |
27 | CHEN S, WEI Z, SUN G,et al .Convex hull based robust security region for electricity-gas integrated energy systems[J].IEEE Transactions on Power Systems,2018,99:1-12. doi:10.1109/tpwrs.2018.2888605 |
28 | DING T, BO R, SUN H,et al .A robust two-level coordinated static voltage security region for centrally integrated wind farms[J].IEEE Transactions on Smart Grid,2015,7(1):460-470. doi:10.1109/tsg.2015.2396688 |
29 | CHEN S J, CHEN Q X, XIA Q,et al .Steady-state security assessment method based on distance to security region boundaries[J].IET Generation,Transmission & Distribution,2013,7(3):288-297. doi:10.1049/iet-gtd.2012.0288 |
30 | YU Y, LIU Y, QIN C,et al .Theory and method of power system integrated security region irrelevant to operation states:an introduction[J].Engineering,2020,6(7):754-777. doi:10.1016/j.eng.2019.11.016 |
31 | WU F, KUMAGAI S .Steady-state security regions of power systems[J].IEEE Transactions on Circuits and Systems,1982,29(11):703-711. doi:10.1109/tcs.1982.1085091 |
32 | NGUYEN HUNG D, KRISHNAMURTHY D, KONSTANTIN T .Constructing convex inner approximations of steady-state security regions[J].IEEE Transactions on Power Systems,2019,34(1):257-267. doi:10.1109/tpwrs.2018.2868752 |
33 | LEE D, NGUYEN H D, DVIJOTHAM K,et al .Convex restriction of power flow feasibility sets[J].IEEE Transactions on Control of Network Systems,2019,6(3):1235-1245. doi:10.1109/tcns.2019.2930896 |
34 | LI X, JIANG T, BAI L,et al .Orbiting optimization model for tracking voltage security region boundary in bulk power grids[J].CSEE Journal of Power and Energy Systems,2022,8(2):476-487. |
35 | LECUN Y, BENGIO Y, HINTON G .Deep learning[J].Nature,2015,521:436-444. doi:10.1038/nature14539 |
36 | WU S, ZHENG L, HU W,et al .Improved deep belief network and model interpretation method for power system transient stability assessment[J].Journal of Modern Power Systems and Clean Energy,2019,8(1):27-37. doi:10.35833/mpce.2019.000058 |
37 | ZHU L, HILL D J .Data/model jointly driven high-quality case generation for power system dynamic stability assessment[J].IEEE Transactions on Industrial Informatics,2021,18(8):5055-5066. doi:10.1109/tii.2021.3123823 |
38 | 张峥,原帅,时伟光,等 .基于深度神经网络的UHVDC输电系统故障诊断[J].电网与清洁能源,2024,40(7):88-94. |
ZHANG Z, YUAN S, SHI W G,et al .Fault diagnosis of UHVDC transmission lines based on deep neural network[J].Power System and Clean Energy,2024,40(7):88-94. | |
39 | 宋继明,毛继兵,马卫华,等 .基于深度神经网络的特高压变压器滤油注油过程故障诊断技术研究[J].电网与清洁能源,2023,39(12):95-103. |
SONG J M, MAO J B, MA W H,et al .Research on oil filtration and injection process fault diagnosis for ultrahigh voltage transformers based on deep neural networks[J].Power System and Clean Energy,2023,39(12):95-103. | |
40 | 申洪涛,李飞,史轮,等 .基于气象数据降维与混合深度学习的短期电力负荷预测[J].电力建设,2024,45(1):13-21. |
SHEN H T, LI F, SHI L,et al .Short-term power load forecasting based on reduction of meteorological data dimensionality and hybrid deep learning[J].Electric Power Construction,2024,45(1):13-21. | |
41 | HU C, ZHANG J, YUAN H,et al .Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19[J].Applied Energy,2022,309:118458. doi:10.1016/j.apenergy.2021.118458 |
42 | HOU Q, ZHANG N, KIRSCHEN D S,et al .Sparse oblique decision tree for power system security rules extraction and embedding[EB/OL].(2020-4-20)[2024-12-15]..org/abs/2004.09579v1. |
43 | BEHDADNIA T, YASLAN Y, GENC I .A new method of decision tree based transient stability assessment using hybrid simulation for real-time PMU measurements[J].IET Generation,Transmission & Distribution,2021,15(4):678-693. doi:10.1049/gtd2.12051 |
44 | DAI Y, ZHANG J, XU P,et al .High-dimensional steady-state security region boundary approximation in power systems using feature non-linear converter and improved oblique decision tree[J].Journal of Modern Power Systems and Clean Energy,2024,12(6):1786-1797. doi:10.35833/mpce.2024.000188 |
45 | 李承周,王宁玲,窦潇潇,等 .多能源互补分布式能源系统集成研究综述及展望[J].中国电机工程学报,2023,43(18):7127-7150. |
LI C Z, WANG N L, DOU X X,et al .Review and prospect on the system integration of distributed energy system with the complementation of multiple energy sources[J].Proceedings of the CSEE,2023,43(18):7127-7150. | |
46 | DONG J, WANG H, YANG J,et al .Optimal scheduling framework of electricity-gas-heat integrated energy system based on asynchronous advantage actor-critic algorithm[J].IEEE Access,2021,9:139685-139696. doi:10.1109/access.2021.3114335 |
47 | CUI F, AN D, XI H .Integrated energy hub dispatch with a multi-mode CAES-BESS hybrid system:an option-based hierarchical reinforcement learning approach[J].Applied Energy,2024,374:123950. doi:10.1016/j.apenergy.2024.123950 |
48 | DOLATABADI A, ABDELTAWAB H, MOHAMED Y A R I .A novel model-free deep reinforcement learning framework for energy management of a PV integrated energy hub[J].IEEE Transactions on Power Systems,2022,38(5):4840-4852. doi:10.1109/tpwrs.2022.3212938 |
49 | YANG L, SUN Q, ZHANG N,et al .Indirect multi-energy transactions of energy internet with deep reinforcement learning approach[J].IEEE Transactions on Power Systems,2022,37(5):4067-4077. doi:10.1109/tpwrs.2022.3142969 |
50 | SAYED A R, ZHANG X, WANG G,et al .Online operational decision-making for integrated electric-gas systems with safe reinforcement learning[J].IEEE Transactions on Power Systems,2024,39(2):2893-2906. doi:10.1109/tpwrs.2023.3320172 |
51 | YANG L, SUN Q, ZHANG N,et al .Optimal energy operation strategy for we-energy of energy internet based on hybrid reinforcement learning with human-in-the-loop[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,52(1): 32-42. doi:10.1109/TSMC.2020.3035406 |
52 | WANG Y, QIU D, SUN X,et al .Coordinating multi-energy microgrids for integrated energy system resilience:a multi-task learning approach[J].IEEE Transactions on Sustainable Energy,2023,15(2):920-937. doi:10.1109/tste.2023.3317133 |
53 | YANG T, ZHAO L, LI W,et al .Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning[J].Energy,2021,235:121377. doi:10.1016/j.energy.2021.121377 |
54 | ZHENG L, WU H, GUO S,et al .Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy[J].Energy,2023,277:127636. doi:10.1016/j.energy.2023.127636 |
55 | WANG T, ZHAO J, LEUNG H,et al .A condition knowledge representation and feedback learning framework for dynamic optimization of integrated energy systems[J].IEEE Transactions on Cybernetics,2024,54(5):2880-2890. doi:10.1109/tcyb.2023.3234077 |
56 | LI X, CHEN S, ZHANG J,et al .A physics-informed deep learning paradigm for transient power angle stability assessment[J].IEEE Journal of Radio Frequency Identification,2022,6:948-952. doi:10.1109/jrfid.2022.3213882 |
57 | 李湘,陈思远,张俊,等 .基于物理信息嵌入的非固定长度电力系统暂态稳定快速评估[J/OL].上海交通大学学报,1-15[2024-0913. . |
LI X, CHEN S Y, ZHANG J,et al .Rapid non-fixed length transient stability assessment of power system based on physics-lnformed neural networks[J/OL].Journal of Shanghai Jiaotong University,1-15[2024-0913. . | |
58 | GAO J, CHEN S, LI X,et al .Transient voltage control based on physics-informed reinforcement learning[J].IEEE Journal of Radio Frequency Identification,2022,6:905-910. doi:10.1109/jrfid.2022.3213895 |
59 | QIU J, YANG H, ZHANG J,et al .Parameter tuning of new type energy virtual synchronous generator based on physics-informed reinforcement learning[C]//2023 8th International Conference on Power and Renewable Energy (ICPRE).Shanghai,China:IEEE,2023:888-893. doi:10.1109/icpre59655.2023.10353614 |
60 | 张剑,崔明建,何怡刚 .结合数据驱动与物理模型的主动配电网双时间尺度电压协调优化控制[J].电工技术学报,2024,39(5):1327-1339. |
ZHANG J, CUI M J, HE Y G .Dual timescales coordinated and optimal voltages control in distribution systems using data-driven and physical optimization[J].Transactions of China Electrotechnical Society,2024,39(5):1327-1339. | |
61 | 李成翔,杜艳丽,朱益华,等 .基于风电机组频率主动支撑的多时间尺度调频控制策略[J].南方电网技术,2024,18(3):83-92. |
LI C X, DU Y L, ZHU Y H,et al .Multi-time scale frequency regulation control strategy based on frequency active support of wind turbines[J].Southern Power System Technology,2024,18(3):83-92. | |
62 | 车志远,余海涛,庞玉毅,等 .基于跟踪微分器的永磁同步电机双时间尺度滑模控制研究[J/OL].上海交通大学学报,1-23[2024-09-13].. |
CHE Z Y, YU H T, PANG Y Y,et al .Research on tracking differentiator-based dual-time- scale sliding mode control for permanent magnet synchronous motors[J/OL].Journal of Shanghai Jiaotong University,1-23[2024-09-13].. | |
63 | XU P, DUAN J, ZHANG J,et al .Active power correction strategies based on deep reinforcement learning—Part I:a simulation-driven solution for robustness[J].CSEE Journal of Power and Energy Systems,2021,8(4):1122-1133. |
64 | XU P, ZHANG J, LU J,et al .A prior knowledge-embedded reinforcement learning method for real-time active power corrective control in complex power systems[J].Frontiers in Energy Research,2022,10:1009545. doi:10.3389/fenrg.2022.1009545 |
65 | JIAHAO Y, WENBO M, KE W,et al .Architecture of intelligent decision embedding knowledge for power grid generation-load look-ahead dispatch based on deep reinforcement learning[C]//2023 IEEE 6th International Electrical and Energy Conference (CIEEC).Hefei,China:IEEE,2023:2723-2726. doi:10.1109/cieec58067.2023.10166017 |
66 | DU Y, LI F, ZANDI H,et al .Approximating Nash equilibrium in day-ahead electricity market bidding with multi-agent deep reinforcement learning[J].Journal of Modern Power Systems and Clean Energy,2021,9(3):534-544. doi:10.35833/mpce.2020.000502 |
67 | WANG X, ZHONG H, ZHANG G,et al .Adaptive look-ahead economic dispatch based on deep reinforcement learning[J].Applied Energy,2024,353:122121. doi:10.1016/j.apenergy.2023.122121 |
68 | BAI Y, CHEN S, ZHANG J,et al .An adaptive active power rolling dispatch strategy for high proportion of renewable energy based on distributed deep reinforcement learning[J].Applied Energy,2023,330:120294. doi:10.1016/j.apenergy.2022.120294 |
69 | 胡丹尔,彭勇刚,韦巍,等 .多时间尺度的配电网深度强化学习无功优化策略[J].中国电机工程学报,2022,42(14):5034-5044. |
HU D E, PENG Y G, WEI W,et al .Multi-timescale deep reinforcement learning for reactive power optimization of distribution network[J].Proceedings of the CSEE,2022,42(14):5034-5044. | |
70 | SI R, CHEN S, ZHANG J,et al .A multi-agent reinforcement learning method for distribution system restoration considering dynamic network reconfiguration[J].Applied Energy,2024,372:123625. doi:10.1016/j.apenergy.2024.123625 |
71 | 刘祺,王承民,谢宁,等 .新型配电系统中考虑电动汽车差异化行为特性的充换电站规划方法[J].智慧电力,2024,52(9):18-24. |
LIU Q, WANG C M, XIE N,et al .Charging and swapping stations planning method considering differentiated behavior characteristics of electric vehicles in new distribution system[J].Smart Power,2024,52(9):18-24. | |
72 | 王安宁,范荣奇,张旸,等 .基于多特征量判据的新型配电系统早期故障检测[J].中国电力,2024,57(9):181-193. |
WANG A N, FAN R Q, ZHANG Y,et al .Multiple characteristics criterion based incipient fault detection of distribution systems[J].Electric Power,2024,57(9):181-193. | |
73 | 郭镥,刘永礼,张媛,等 .实用化数据同步技术在新型配电系统规划多人协同机制中的应用[J].发电技术,2024,45(2):363-372. |
GUO L, LIU Y L, ZHANG Y,et al .Application of practical data synchronization technology in multi person cooperation mechanism of new distribution system planning[J].Power Generation Technology,2024,45(2):363-372. | |
74 | 张汪洋,樊艳芳,侯俊杰,等 .基于集成深度神经网络的配电网分布式状态估计方法[J].电力系统保护与控制,2024,52(3):128-140. |
ZHANG W Y, FAN Y F, HOU J J,et al .Distribution network distributed state estimation method based on an integrated deep neural network[J].Power System Protection and Control,2024,52(3):128-140. | |
75 | 黄奕俊,肖健,彭依明,等 .基于边缘计算的新型电力系统分布式状态估计[J].电力科学与技术学报,2025,40(1):77-84. |
HUANG Y J, XIAO J, PENGY M,et al .Distributed state estimation of new power system based on edge computing[J].Journal of Electric Power Science and Technology,2025,40(1):77-84. | |
76 | 张明泽,栾文鹏,艾欣,等 .基于边缘计算的台区短期负荷预测方法[J].电测与仪表,2024,61(4):93-99. |
ZHANG M Z, LUAN W P, AI X,et al .Short-term substation load forecasting method based on edge computing[J].Electrical Measurement & Instrumentation,2024,61(4):93-99. | |
77 | 张丽,李世情,艾恒涛,等 .基于改进Q学习算法和组合模型的超短期电力负荷预测[J].电力系统保护与控制,2024,52(9):143-153. |
ZHANG L, LI S Q, AI H T,et al .Ultra-short-term power load forecasting based on an improved Q-learning algorithm and combination model[J].Power System Protection and Control,2024,52(9):143-153. | |
78 | 黄一川,宋瑜辉,荆朝霞 .基于联邦学习的能源聚合服务商负荷预测[J].电力建设,2025,46(1):37-47. |
HUANG Y C, SONG Y H, JING Z X .Federated learning-based load forecasting for energy aggregation service providers[J].Electric Power Construction,2025,46(1):37-47. | |
79 | CAO D, ZHAO J, HU W,et al .Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems[J].IEEE Transactions on Smart Grid,2022(13-1).DOI:10.1109/TSG.2021.3113085. |
80 | 李付强,张文朝,潘艳,等 .基于改进深度确定性策略梯度算法的电压无功优化策略[J].智慧电力,2024,52(5):1-7. |
LI F Q, ZHANG W C, PAN Y,et al .Reactive voltage optimization strategy based on improved depth deterministic strategy gradient algorithm[J].Smart Power,2024,52(5):1-7. | |
81 | ZHAO J,MEMBER, LI F,et al .Deep reinforcement learning based model-free on-line dynamic multi-microgrid formation to enhance resilience[EB/OL].(2022-05-06)[2024-10-18].. doi:10.1109/tsg.2022.3160387 |
82 | SI R, QIAO J, WANG X,et al .A transferable multi-agent reinforcement learning method for distribution service restoration[C]//2023 IEEE International Conference on Systems,Man,and Cybernetics (SMC).Hawaii,USA:IEEE,2023:1866-1871. doi:10.1109/smc53992.2023.10394147 |
83 | CHOLLET F .On the measure of intelligence[EB/OL].(2019-11-06)[2024-10-18].. doi:10.1023/a:1010650624155 |
01547v2. doi:10.1023/a:1010650624155 | |
84 | SCHAUL T, TOGELIUS J, SCHMIDHUBER J .Measuring intelligence through games[EB/OL].(2011-09-06)[2024-10-18].. |
85 | ZHANG T .Parallel system based quantitative assessment and self-evolution for artificial intelligence of active power corrective control[J].CSEE Journal of Power and Energy Systems,2023,10(1):13-28. |
86 | HERNÁNDEZ-LOBATO J M, GELBART M A, ADAMS R P,et al .A general framework for constrained Bayesian optimization using information-based search[J].Journal of Machine Learning Research,2016,17(1):5549-5601. |
87 | WANG Z, GEHRING C, KOHLI P,et al .Batched large-scale Bayesian optimization in high-dimensional spaces[C]//International Conference on Artificial Intelligence and Statistics.Playa Blanca,Canary Islands:PMLR,2018:745-754. |
88 | LÉVESQUE J C, GAGNÉ C, SABOURIN R .Bayesian hyperparameter optimization for ensemble learning[EB/OL].(2016-05-20)[2024-10-18]..org/abs/1605.06394v1. |
89 | LÉVESQUE J C, DURAND A, GAGNÉ C,et al .Bayesian optimization for conditional hyperparameter spaces[C]//2017 International Joint Conference on Neural Networks (IJCNN).Anchorage,Alaska:IEEE,2017:286-293. doi:10.1109/ijcnn.2017.7965867 |
[1] | 侯朗博, 孙昊, 陈衡, 高悦. 基于需求响应与Stackelberg博弈的小区综合能源系统优化调度[J]. 发电技术, 2025, 46(2): 219-230. |
[2] | 张立栋, 杨智翔, 李文锋, 冯江哲, 张博, 任淮辉, 陈哲, 王兆新. 导流板对水平轴风力机气动特性影响的数值模拟研究[J]. 发电技术, 2025, 46(2): 336-343. |
[3] | 郑杨, 任禹丞, 王雨薇, 徐丁吉, 杨慧敏. 基于改进云模型的区域电网电能替代综合效益评价[J]. 发电技术, 2025, 46(2): 399-408. |
[4] | 胡山鹰, 金涌, 张臻烨. 发展新质生产力,实现碳中和[J]. 发电技术, 2025, 46(1): 1-8. |
[5] | 兰国芹, 陆烨, 阚严生, 张继广, 王欢欢, 钟芳, 王承才, 肖黎明, 王照阳. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46(1): 19-30. |
[6] | 张立栋, 铁浩, 刘惠文, 李钦伟, 田文鑫, 赵秀勇, 常子涵. 风力机偏航对尾迹演化影响的实验研究[J]. 发电技术, 2024, 45(6): 1153-1162. |
[7] | 李文, 卜凡鹏, 张潇桐, 杨创东, 张静. 基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J]. 发电技术, 2024, 45(6): 1186-1200. |
[8] | 吴任博, 黄奕俊. 高比例可再生能源接入下含自愈性能的分布式配电网重构策略研究[J]. 发电技术, 2024, 45(5): 975-982. |
[9] | 肖白, 赵雪纯, 董光德. 电能质量综合评估方法综述与展望[J]. 发电技术, 2024, 45(4): 716-733. |
[10] | 王伟杰, 曾鑫洁, 徐远途, 李书仪, 阮灿华, 童宁, 武小梅. 基于正序突变量相轨迹辨识的可再生能源配电网电流保护[J]. 发电技术, 2024, 45(4): 753-764. |
[11] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[12] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[13] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[14] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[15] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||