发电技术 ›› 2024, Vol. 45 ›› Issue (4): 753-764.DOI: 10.12096/j.2096-4528.pgt.23078
王伟杰1, 曾鑫洁2, 徐远途1, 李书仪2, 阮灿华1, 童宁2, 武小梅2
收稿日期:
2024-01-20
修回日期:
2024-04-30
出版日期:
2024-08-31
发布日期:
2024-08-27
通讯作者:
童宁
作者简介:
基金资助:
Weijie WANG1, Xinjie ZENG2, Yuantu XU1, Shuyi LI2, Canhua RUAN1, Ning TONG2, Xiaomei WU2
Received:
2024-01-20
Revised:
2024-04-30
Published:
2024-08-31
Online:
2024-08-27
Contact:
Ning TONG
Supported by:
摘要:
目的 随着可再生能源的大量接入,中性点经小电阻接地的配电网潮流不确定性使得传统三段式电流保护的整定变得日趋复杂,其灵敏性和可靠性都有所降低。为了解决上述问题,提出了一种基于正序突变量电流相轨迹辨识的新型电流保护方法予以应对。 方法 首先,分析了故障点上游、下游的正序突变量电流大小及其分布特征;其次,利用亲和力聚类算法,根据聚类结果识别定义的主故障路径;最后,提出一种搜索方法,将搜索得到的正序突变量产生源头,即位于主故障路径上的最后一级馈线视为故障馈线。 结果 基于PSCAD的仿真研究表明,所提出的保护方法能够适应各种故障工况,不受分布式电源加入的影响,具有较高的灵敏度和可靠性。 结论 研究结果有助于提升中性点经小电阻接地的配电网运行安全性,同时提升故障排查效率。
中图分类号:
王伟杰, 曾鑫洁, 徐远途, 李书仪, 阮灿华, 童宁, 武小梅. 基于正序突变量相轨迹辨识的可再生能源配电网电流保护[J]. 发电技术, 2024, 45(4): 753-764.
Weijie WANG, Xinjie ZENG, Yuantu XU, Shuyi LI, Canhua RUAN, Ning TONG, Xiaomei WU. Renewable Energy Distribution Network Overcurrent Protection Based on Positive-Sequence Sudden-Change Component Locus Identification[J]. Power Generation Technology, 2024, 45(4): 753-764.
参数 | 电阻 | 电感 | 电导 |
---|---|---|---|
序 | 正/负序;零序 | 正/负序;零序 | 正/负序;零序 |
电抗/(Ω/km) | 0.157;0.235 | 0.103;0.154 | 1.22×10-5;8.15×10-6 |
表1 馈线参数
Tab. 1 Feeder parameters
参数 | 电阻 | 电感 | 电导 |
---|---|---|---|
序 | 正/负序;零序 | 正/负序;零序 | 正/负序;零序 |
电抗/(Ω/km) | 0.157;0.235 | 0.103;0.154 | 1.22×10-5;8.15×10-6 |
馈线编号 | 馈线类型 | 馈线长度/km |
---|---|---|
L1 | 电缆 | 1.00 |
L2 | 电缆 | 1.00 |
L3 | 电缆 | 0.65 |
L21 | 电缆 | 1.00 |
L22 | 电缆 | 1.00 |
L31 | 电缆 | 0.60 |
L32 | 电缆 | 0.60 |
L321 | 电缆 | 0.94 |
L322 | 电缆 | 1.20 |
L3211 | 电缆 | 0.52 |
L3212 | 电缆 | 0.52 |
L3221 | 电缆 | 0.44 |
表2 馈线配置
Tab. 2 Feeder configurations
馈线编号 | 馈线类型 | 馈线长度/km |
---|---|---|
L1 | 电缆 | 1.00 |
L2 | 电缆 | 1.00 |
L3 | 电缆 | 0.65 |
L21 | 电缆 | 1.00 |
L22 | 电缆 | 1.00 |
L31 | 电缆 | 0.60 |
L32 | 电缆 | 0.60 |
L321 | 电缆 | 0.94 |
L322 | 电缆 | 1.20 |
L3211 | 电缆 | 0.52 |
L3212 | 电缆 | 0.52 |
L3221 | 电缆 | 0.44 |
馈线编号 | 幅值/kA | 相角/(°) |
---|---|---|
L1 | 0.005 5 | 11.21 |
L2 | 0.009 9 | 17.09 |
L3 | 0.022 4 | -159.87 |
L21 | 0.004 6 | 19.49 |
L22 | 0.005 3 | 15.01 |
L31 | 0.006 4 | 5.96 |
L32 | 0.028 6 | -163.02 |
L321 | 0.037 1 | -165.10 |
L322 | 0.008 6 | 7.94 |
L3211 | 0.048 7 | -167.38 |
L3212 | 0.011 7 | 5.34 |
L3221 | 0.008 6 | 7.94 |
表3 故障场景1正序突变量幅值与相角
Tab. 3 Amplitude and phase angle of positive sequence sudden-change variable under fault scenario 1
馈线编号 | 幅值/kA | 相角/(°) |
---|---|---|
L1 | 0.005 5 | 11.21 |
L2 | 0.009 9 | 17.09 |
L3 | 0.022 4 | -159.87 |
L21 | 0.004 6 | 19.49 |
L22 | 0.005 3 | 15.01 |
L31 | 0.006 4 | 5.96 |
L32 | 0.028 6 | -163.02 |
L321 | 0.037 1 | -165.10 |
L322 | 0.008 6 | 7.94 |
L3211 | 0.048 7 | -167.38 |
L3212 | 0.011 7 | 5.34 |
L3221 | 0.008 6 | 7.94 |
馈线编号 | 幅值/kA | 相角/(°) |
---|---|---|
L1 | 0.167 3 | 27.35 |
L2 | 0.812 1 | -144.44 |
L3 | 0.430 3 | 30.21 |
L21 | 0.218 1 | 30.21 |
L22 | 1.029 5 | -145.57 |
L31 | 0.123 4 | 27.56 |
L32 | 0.307 9 | 35.97 |
L321 | 0.200 9 | 36.40 |
L322 | 0.107 0 | 35.17 |
L3211 | 0.100 5 | 36.40 |
L3212 | 0.100 5 | 36.40 |
L3221 | 0.107 0 | 35.17 |
表4 故障场景2正序突变量幅值与相角
Tab. 4 Amplitude and phase angle of positive sequence sudden-change variable under scenario 2
馈线编号 | 幅值/kA | 相角/(°) |
---|---|---|
L1 | 0.167 3 | 27.35 |
L2 | 0.812 1 | -144.44 |
L3 | 0.430 3 | 30.21 |
L21 | 0.218 1 | 30.21 |
L22 | 1.029 5 | -145.57 |
L31 | 0.123 4 | 27.56 |
L32 | 0.307 9 | 35.97 |
L321 | 0.200 9 | 36.40 |
L322 | 0.107 0 | 35.17 |
L3211 | 0.100 5 | 36.40 |
L3212 | 0.100 5 | 36.40 |
L3221 | 0.107 0 | 35.17 |
馈线编号 | 幅值/kA | 相角/(°) |
---|---|---|
L1 | 0.730 8 | 19.65 |
L2 | 1.301 4 | 24.80 |
L3 | 1.876 1 | 24.70 |
L21 | 0.608 2 | 27.06 |
L22 | 0.694 1 | 22.82 |
L31 | 0.534 6 | 18.67 |
L32 | 1.345 7 | 27.11 |
L321 | 0.878 3 | 27.54 |
L322 | 0.467 4 | 26.30 |
L3211 | 0.439 1 | 27.54 |
L3212 | 0.439 1 | 27.54 |
L3221 | 0.467 4 | 26.30 |
表5 故障场景3正序突变量幅值与相角
Tab. 5 Amplitude and phase angle of positive sequence sudden-change variable under scenario 3
馈线编号 | 幅值/kA | 相角/(°) |
---|---|---|
L1 | 0.730 8 | 19.65 |
L2 | 1.301 4 | 24.80 |
L3 | 1.876 1 | 24.70 |
L21 | 0.608 2 | 27.06 |
L22 | 0.694 1 | 22.82 |
L31 | 0.534 6 | 18.67 |
L32 | 1.345 7 | 27.11 |
L321 | 0.878 3 | 27.54 |
L322 | 0.467 4 | 26.30 |
L3211 | 0.439 1 | 27.54 |
L3212 | 0.439 1 | 27.54 |
L3221 | 0.467 4 | 26.30 |
1 | 朱奇先,朱玉鑫,王晓兰,等 .网格式交直流配电网潮流计算及其损耗特性[J].电力系统及其自动化学报,2020,32(3):39-45. doi:10.19635/j.cnki.csu-epsa.000256 |
ZHU Q X, ZHU Y X, WANG X L,et al .Power flow calculation and loss characteristics of meshed AC/DC distribution network[J].Proceedings of the CSU-EPSA,2020,32(3):39-45. doi:10.19635/j.cnki.csu-epsa.000256 | |
2 | 陈培育,金尧,郑骁麟,等 .基于可观性和可计算性的配电网关键量测识别方法[J].智慧电力,2024,52(3):110-116. |
CHEN P Y, JIN Y, ZHENG X L,et al .Identification of critical measurement for distribution network based on observability and computability[J].Smart Power,2024,52(3):110-116. | |
3 | 冀肖彤,杨东俊,方仍存,等 .“双碳”目标下未来配电网构建思考与展望[J].电力建设,2024,45(2):37-48. |
JI X T, YANG D J, FANG R C,et al .Research and prospect of future distribution network construction under dual carbon target[J].Electric Power Construction,2024,45(2):37-48. | |
4 | 潘可佳,冯川洋,潘雪 .基于大数据的配电网馈线故障智能识别定位方法研究[J].光学与光电技术,2022,20(4):145-152. |
PAN K J, FENG C Y, PAN X .Intelligent identification and location method of fault line in distribution network based on big data[J].Optics & Optoelectronic Technology,2022,20(4):145-152. | |
5 | 刘刚,王秀茹,李华,等 .考虑风电不确定性的配电网区间潮流计算[J].电测与仪表,2022,59(2):126-132. |
LIU G, WANG X R, LI H,et al .Interval power flow calculation for distribution networks considering the uncertainty of wind power[J].Electrical Measurement & Instrumentation,2022,59(2):126-132. | |
6 | 邱冬,贾勇勇,韩少华,等 .基于区间-概率潮流分析的配电网调压手段适应性评估方法[J].浙江电力,2024,43(4):85-94. |
QIU D, JIA Y Y, HAN S H,et al .An adaptability evaluation method for voltage regulation measures in distribution networks based on interval and probability power flow analysis[J].Zhejiang Electric Power,2024,43(4):85-94. | |
7 | 米阳,申杰,卢长坤,等 .考虑含储能的三端智能软开关与需求侧响应的主动配电网有功无功协调优化[J].电力系统保护与控制,2024,52(3):104-118. |
MI Y, SHEN J, LU C K,et al .Active and reactive power coordination optimization of an active distribution network considering a three-terminal soft open point with energy storage and demand response[J].Power System Protection and Control,2024,52(3):104-118. | |
8 | 袁兆祥,张翼,聂铭,等 .分布式新能源接入的10 kV配电网保护适应性分析[J].电力建设,2024,45(2):49-57. doi:10.12204/j.issn.1000-7229.2024.02.005 |
YUAN Z X, ZHANG Y, NIE M,et al .Protection adaptability analysis of distributed generation connected to 10 kV distribution network[J].Electric Power Construction,2024,45(2):49-57. doi:10.12204/j.issn.1000-7229.2024.02.005 | |
9 | 邓祥力,葛慧宁,廖玥琳,等 .基于多源数据交互的高渗透率主动配电网保护策略[J].电力科学与技术学报,2024,39(2):101-111. |
DENG X L, GE H N, LIAO Y L,et al .Active distribution network protection strategy based on multi-source data interaction under high permeability[J].Journal of Electric Power Science and Technology,2024,39(2):101-111. | |
10 | 邓丰,李欣然,曾祥君,等 .基于多端故障行波时差的含分布式电源配电网故障定位新方法[J].中国电机工程学报,2018,38(15):4399-4409. |
DENG F, LI X R, ZENG X J,et al .A novel multi-terminal fault location method based on traveling wave time difference for radial distribution systems with distributed generators[J].Proceedings of the CSEE,2018,38(15):4399-4409. | |
11 | HUANG K, CAI R, ZHAO J,et al .Analysis of current protection in distribution networks with clean energy access[J].Frontiers in Energy Research,2023,10:1035781. doi:10.3389/fenrg.2022.1035781 |
12 | GHOTBI-MALEKI M, CHABANLOO R M, ZEINELDIN H H,et al .Design of setting group-based overcurrent protection scheme for active distribution networks using MILP[J].IEEE Transactions on Smart Grid,2021,12(2):1185-1193. doi:10.1109/tsg.2020.3027371 |
13 | PARK J D, CANDELARIA J, MA L,et al .DC ring-bus microgrid fault protection and identification of fault location[J].IEEE Transactions on Power Delivery,2013,28(4):2574-2584. doi:10.1109/tpwrd.2013.2267750 |
14 | 于成澳,高湛军,刘朝,等 .基于自适应制动补偿系数的有源配电网电流纵联差动保护[J].电力系统保护与控制,2023,51(17):1-14. |
YU C A, GAO Z J, LIU Z,et al .A current longitudinal differential protection method based on adaptive braking compensation coefficient for active distribution networks[J].Power System Protection and Control,2023,51(17):1-14. | |
15 | FARSADI M, YAZDANI NEJADI A, ESMAEILYNASAB A .Reducing over-current relays operating times in adaptive protection of distribution networks considering dg penetration[C]//2015 9th International Conference on Electrical and Electronics Engineering (ELECO).Bursa,Turkey:IEEE,2016:463-468. doi:10.1109/eleco.2015.7394439 |
16 | EKKA K C, KALE V S, KHOND S .Improved adaptive micro-grid over current protection scheme considering false tripping[EB/OL].(2023-04-28)[2023-06-01]. . |
17 | FARKHANI J S, ZAREEIN M, SOROUSHMEHR H,et al .Coordination of directional overcurrent protection relay for distribution network with embedded DG[C]//2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI).Tehran,Iran:IEEE,2019:281-286. doi:10.1109/kbei.2019.8735025 |
18 | KHESHTI M, KANG X .Optimal overcurrent relay coordination in distribution network based on lightning flash algorithm[J].Engineering Computations,2018,35(3):1140-1160. doi:10.1108/ec-01-2017-0003 |
19 | ALAEE P, AMRAEE T .Optimal coordination of directional overcurrent relays in meshed active distribution network using imperialistic competition algorithm[J].Journal of Modern Power Systems and Clean Energy,2020,9(2):416-422. doi:10.35833/mpce.2019.000184 |
20 | RAJALAKSHMI J, DURAIRAJ S .Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks[J].Journal of Combinatorial Optimization,2021,41(2):267-289. doi:10.1007/s10878-020-00681-2 |
21 | SAMET H, GHANBARI T, JARRAHI M A,et al .Efficient current-based directional relay algorithm[J].IEEE Systems Journal,2019,13(2):1262-1272. doi:10.1109/jsyst.2018.2868861 |
22 | CHU T, WANG G, WANG T,et al .Distributed relay protection for distribution network based on hybrid power method and current method[J].Energy Reports,2022,8:749-756. doi:10.1016/j.egyr.2022.02.207 |
23 | 王宁,韩国栋,高厚磊,等 .有源配电网电流差动保护判据研究[J].电力系统保护与控制,2023,51(7):14-23. |
WANG N, HAN G D, GAO H L,et al .The current differential protection criterion of active distribution networks[J].Power System Protection and Control,2023,51(7):14-23. | |
24 | HAFEZ D M, ELDIN E H S, MAHMOUD A A .A novel unit protective relaying concept based on sequential overlapping derivative transform:Interconnected network application[J].International Journal of Electrical Power & Energy Systems,2013,45(1):206-216. doi:10.1016/j.ijepes.2012.07.047 |
25 | 李冬梅,胡扬宇,王利利,等 .基于改进注入法的直流配电网双端测距故障定位方法[J].智慧电力,2019,47(12):110-116. |
LI D M, HU Y Y, WANG L L,et al .Double-end distance measurement fault location method for DC distribution network based on improved injection method[J].Smart Power,2019,47(12):110-116. | |
26 | 张宏亮 .基于信号注入的10 kV配电网故障定位系统设计[D].广州:华南理工大学,2017. |
ZHANG H L .Design of fault location system of 10 kV distribution network based on signal injection method[D].Guangzhou:South China University of Technology,2017. | |
27 | 杨锴 .基于S变换与相关算法的配电网雷击故障识别与定位[J].现代建筑电气,2018,9(2):16-22. |
YANG K .Lightning fault identification and location based S-transform and correlation algorithm in distribution network[J].Modern Architecture Electric,2018,9(2):16-22. | |
28 | 俞君杰,戴华冠 .电网雷击故障监测中人工智能应用方案[J].微型电脑应用,2022,38(8):154-158. |
YU J J, DAI H G .Application of artificial intelligence in lightning fault monitoring of power grid[J].Microcomputer Applications,2022,38(8):154-158. | |
29 | 徐春营,朱毅,何辉,等 .配网雷击故障识别与定位装置的应用[J].自动化应用,2023,64(2):107-109. |
XU C Y, ZHU Y, HE H,et al .Application of lightning fault identification and location device in distribution network[J].Automation Application,2023,64(2):107-109. | |
30 | 王志成,宋国兵,常仲学,等 .配电网单相接地故障时的对地参数实时测量和选线方法[J].电网技术,2023,47(9):3762-3772. |
WANG Z C, SONG G B, CHANG Z X,et al .Real-time measurement of ground parameters and line selection for single-phase grounding faults of distribution network[J].Power System Technology,2023,47(9):3762-3772. | |
31 | 李景丽,刘鹏,赵子敬,等 .中低压配电网单相接地故障熄弧处理方法研究[J].电瓷避雷器,2022(5):125-132. |
LI J L, LIU P, ZHAO Z J,et al .Treatment methods of single-phase grounding fault arc extinction in medium and low voltage distribution network[J].Insulators and Surge Arresters,2022(5):125-132. |
[1] | 杜婉琳, 王玲, 罗威, 朱远哲, 吕鸿, 马潇男, 周霞. 基于深度强化学习的有源配电网电压分层控制策略[J]. 发电技术, 2024, 45(4): 734-743. |
[2] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[3] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[4] | 张宁, 朱昊, 杨凌霄, 胡存刚. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633. |
[5] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[6] | 许洪华, 邵桂萍, 鄂春良, 郭金东. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
[7] | 魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中. 电池型电容器技术发展趋势展望[J]. 发电技术, 2022, 43(5): 748-759. |
[8] | 韩一鸣, 徐鹏飞, 宫建锋, 申雅茹. 基于用户侧需求的电网发展经营综合评价体系研究[J]. 发电技术, 2022, 43(4): 636-644. |
[9] | 刘建伟, 李学斌, 刘晓鸥. 有源配电网中分布式电源接入与储能配置[J]. 发电技术, 2022, 43(3): 476-484. |
[10] | 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2): 198-206. |
[11] | 徐彬, 薛帅, 高厚磊, 彭放. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术, 2022, 43(2): 227-235. |
[12] | 杨贵云, 吴倩, 曹彦昆, 侯晓宇, 孙华, 王践. 基于分层布局思想的配电网拓扑图自动生成算法[J]. 发电技术, 2021, 42(5): 585-594. |
[13] | 王丹丹, 李亚楼, 李芳, 孙璐. 碳中和背景下高温固体氧化物电解制氢的过程建模与热力学分析[J]. 发电技术, 2021, 42(5): 554-560. |
[14] | 宣文博, 李慧, 刘忠义, 孙业广, 侯恺. 一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J]. 发电技术, 2021, 42(3): 289-297. |
[15] | 雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||