发电技术 ›› 2026, Vol. 47 ›› Issue (1): 225-236.DOI: 10.12096/j.2096-4528.pgt.260121

• 新型电力系统 • 上一篇    

虚拟电厂鲁棒调度特性可信量化与协调调度方法

冯德品1, 刘正奇2, 徐兵1, 陈涛1, 崔波1, 王成福2, 董晓明2   

  1. 1.国网山东省电力公司临沂供电公司,山东省 临沂市 276002
    2.电网智能化调度与控制教育部重点实验室(山东大学),山东省 济南市 250061
  • 收稿日期:2025-01-22 修回日期:2025-03-18 出版日期:2026-02-28 发布日期:2026-02-12
  • 通讯作者: 王成福
  • 作者简介:冯德品(1984),男,高级工程师,研究方向为电力系统及其自动化、电网调控运行、继电保护技术, 282336534@qq.com
    刘正奇(1999),男,硕士研究生,主要研究方向为电力系统运行与分析,202134669@mail.sdu.edu.cn
    徐兵(1988),高级工程师,研究方向为电网调控运行、继电保护技术,244937397@qq.com
    王成福(1984),男,博士,副教授,主要研究方向为高比例新能源电力与综合能源系统的安全经济运行,本文通信作者, Wangcf@sdu.edu.cn
  • 基金资助:
    国家自然科学基金联合基金项目(U22B20102)

Trusted Quantification of Robust Scheduling Characteristics and Coordinated Scheduling Methods for Virtual Power Plants

Depin FENG1, Zhengqi LIU2, Bing XU1, Tao CHEN1, Bo CUI1, Chengfu WANG2, Xiaoming DONG2   

  1. 1.Linyi Power Supply Company, State Grid Shandong Electric Power Company, Linyi 276002, Shandong Province, China
    2.Key Laboratory of Intelligent Power Grid Dispatching and Control, Ministry of Education (Shandong University), Jinan 250061, Shandong Province, China
  • Received:2025-01-22 Revised:2025-03-18 Published:2026-02-28 Online:2026-02-12
  • Contact: Chengfu WANG
  • Supported by:
    the Joint Funds of the National Natural Science Foundation of China(U22B20102)

摘要:

目的 基于虚拟电厂(virtual power plant,VPP)技术聚合区域电网内部分布式资源,能以低边际成本有效提高系统灵活性。然而,信息安全等因素导致的数据壁垒,以及分布式协调计算效率和调控资源的不确定性等问题给虚拟电厂辅助服务决策带来困难。据此,分析VPP整体对外特性,包括关口功率、备用能力及运行成本,提出了一种VPP鲁棒调度特性可信量化方法,并构建多VPP博弈的协同调度模型。 方法 首先,考虑分布式电源和需求响应不确定因素影响,解析网络约束下的源荷备用潜力,从而建立VPP数学模型;其次,结合鲁棒优化和多参数规划理论,实现VPP关口功率调节空间、弹性备用能力和最优成本鲁棒可行域可信量化,建立VPP内部资源调控策略与对外交易结果的仿射关系,完成VPP等值聚合;进一步,构建了多VPP与主网有效互动的合作博弈模型;最后,通过3个测试算例验证了本文模型和方法的有效性。 结果 所量化的封装模型参与调度具有更高的计算效率,且保护了VPP内部信息隐私性。通过设计并行程序,封装模型量化过程计算效率得到了进一步提升。 结论 所提方法能有效支撑多重VPP主体协同大电网进行能量和辅助服务的交易,加强主网安全防御体系建设。

关键词: 虚拟电厂, 可信量化, 鲁棒优化, 多参数规划, 等值聚合, 合作博弈

Abstract:

Objectives Aggregating distributed resources within the regional grid based on virtual power plant (VPP) technology can effectively improve system flexibility with low marginal cost. However, data barriers arising from factors such as information security, the computational efficiency of distributed coordination, and the uncertainty of regulation resources pose difficulties for VPP auxiliary service decisions. Accordingly, this paper analyzes the external characteristics of VPP as a whole, including interconnection power, reserve capacity, and operating cost. It proposes a trusted quantification method for robust scheduling characteristics of VPP and constructs a collaborative scheduling model for multiple VPPs. Methods First, considering the uncertainty factors in distributed power and demand response, the source-load reserve potential under the network constraint is analyzed to establish a VPP mathematical model. Second, combining robust optimization and multi-parameter programming theory, the VPP interconnection power regulation range, flexible reserve capacity, and optimal cost robust feasible domain trusted quantification are realized. An affine relationship is established between the internal resource regulation strategy of the VPP and the external transaction results, thereby completing the VPP equivalence aggregation. Further, a cooperative game model is constructed for the effective interaction between multiple VPPs and the grid. Finally, the effectiveness of the model and method is verified by three test cases. Results The quantified encapsulation model participates in scheduling, has higher computing efficiency, and also protects the privacy of internal information within the VPP. By designing parallel programs, the computational efficiency of the encapsulation model quantification process is further improved. Conclusions The quantified encapsulation model participates in scheduling, has higher computing efficiency, and also protects the privacy of internal information within the VPP. By designing parallel programs, the computational efficiency of the encapsulation model quantification process is further improved.

Key words: virtual power plant, trusted quantification, robust optimization, multi-parameter programming, equivalence aggregation, cooperative games

中图分类号: