发电技术 ›› 2023, Vol. 44 ›› Issue (6): 758-768.DOI: 10.12096/j.2096-4528.pgt.23097

• 虚拟电厂规划、调度与控制技术 • 上一篇    下一篇

计及热惯性的热电联产虚拟电厂韧性提升策略

于松源1, 张峻松1, 元志伟2, 房方1   

  1. 1.华北电力大学控制与计算机工程学院, 北京市 昌平区 102206
    2.西安热工研究院有限公司, 陕西省 西安市 710061
  • 收稿日期:2023-08-08 出版日期:2023-12-31 发布日期:2023-12-28
  • 通讯作者: 房方
  • 作者简介:于松源(1994),男,博士,讲师,研究方向为虚拟电厂优化调度,ysyuan@ncepu.edu.cn
    房方(1976),男,博士,教授,博导,研究方向为热电联产虚拟电厂协同调控,本文通信作者,ffang@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52176005)

Resilience Enhancement Strategy of Combined Heat and Power-Virtual Power Plant Considering Thermal Inertia

Songyuan YU1, Junsong ZHANG1, Zhiwei YUAN2, Fang FANG1   

  1. 1.School of Control and Computer Engineering, North China Electric Power University, Changping District, Beijing 102206, China
    2.Xi’an Thermal Power Research Institute Co. , Ltd. , Xi’an 710061, Shaanxi Province, China
  • Received:2023-08-08 Published:2023-12-31 Online:2023-12-28
  • Contact: Fang FANG
  • Supported by:
    National Natural Science Foundation of China(52176005)

摘要:

日益频繁的极端天气给电热耦合系统造成的影响愈发严重。韧性是衡量系统抵御极端事件、减少故障影响并快速恢复的核心指标。为提升电热耦合系统抵御极端灾害的能力,提出一种考虑热惯性的热电联产虚拟电厂(combined heat and power-virtual power plant,CHP-VPP)两阶段三层韧性提升策略。第一阶段以联络开关成本最小为目标,基于最小生成树理论对系统进行重构;第二阶段以运行成本最小为目标,基于分布鲁棒优化理论制定最恶劣的故障场景下的最优决策。采用列与约束生成算法进行迭代求解。基于IEEE 33节点电力系统+6节点供热系统构建CHP-VPP测试系统,仿真结果表明,所提出的方法可有效提升CHP-VPP应对极端灾害的韧性。

关键词: 热电联产虚拟电厂(CHP-VPP), 热惯性, 分布鲁棒, 韧性提升, 极端灾害, 电热耦合系统

Abstract:

The increasingly frequent extreme weather has a more serious impact on the electro-thermal coupling system. Resilience is a core indicator that measures the system’s ability to withstand extreme events, reduce the impact of failures,and recover quickly. To enhance the ability of the electro-thermal coupling system to withstand extreme disasters,a two-stage three-layer resilience enhancement strategy of combined heat and power-virtual power plant (CHP-VPP) considering thermal inertia was proposed. In the first stage, the system was reconstructed based on the minimum spanning tree theory with the goal of minimizing the cost of tie switches. In the second stage,aiming at minimizing the operating cost,the optimal decisions under the worst failure scenario was formulated based on distributionally robust optimization theory. The column and constraint generation algorithm was used for iterative solutions. A CHP-VPP test system was built based on an IEEE 33-bus system and a 6-node thermal system. The simulation results show that the proposed method can effectively enhance the resilience of CHP-VPP to cope with extreme disasters.

Key words: combined heat and power-virtual power plant (CHP-VPP), thermal inertia, distributionally robust, resilience enhancement, extreme disaster, electro-thermal coupling system

中图分类号: