发电技术 ›› 2026, Vol. 47 ›› Issue (1): 214-224.DOI: 10.12096/j.2096-4528.pgt.260120
• 新型电力系统 • 上一篇
刘可文1, 侯朗博2, 孙昊2, 陈衡2
收稿日期:2025-01-16
修回日期:2025-03-23
出版日期:2026-02-28
发布日期:2026-02-12
通讯作者:
陈衡
作者简介:基金资助:Kewen LIU1, Langbo HOU2, Hao SUN2, Heng CHEN2
Received:2025-01-16
Revised:2025-03-23
Published:2026-02-28
Online:2026-02-12
Contact:
Heng CHEN
Supported by:摘要:
目的 为了更好地整合高密度光伏能源,在配电网中引入储能设备,以实现用电负荷的削峰填谷,缓解分布式光伏对电网电压的影响。 方法 通过合理选择储能调度和分布式光伏出力策略,采用多目标优化方法,以最小化网络损耗和电压偏差为目标进行配电网潮流优化。利用层次分析法-熵权法建立综合评价体系,通过粒子群算法构建优化模型,得出光伏与储能协同下的最优调度策略。 结果 通过30节点的仿真模型和实际案例进行计算分析,验证了储能系统能有效平抑光伏波动,保障节点电压稳定,提升能源利用率。相比传统算法,所提方法在电能质量与网络损耗控制方面具有显著优势。 结论 该方法能够实现配电网的高效稳定运行,减少系统的网络损耗。
中图分类号:
刘可文, 侯朗博, 孙昊, 陈衡. 含高密度光伏与储能的配电网多目标优化调度策略[J]. 发电技术, 2026, 47(1): 214-224.
Kewen LIU, Langbo HOU, Hao SUN, Heng CHEN. Multi-Objective Optimization Scheduling Strategies for Distribution Networks With High-Density Photovoltaics and Energy Storage[J]. Power Generation Technology, 2026, 47(1): 214-224.
| [1] | 张珍珍,吕清泉,张健美 .“双碳”目标下分布式光伏发电技术的研究进展及展望[J].太阳能,2023(1):17-21. |
| ZHANG Z Z, LÜ Q Q, ZHANG J M .Research progress and prospect of distributed PV power generation technology under the goal of emission peak and carbon neutrality[J].Solar Energy,2023(1):17-21. | |
| [2] | 魏春晖,单林森,胡大栋,等 .面向需求响应的园区虚拟电厂优化调度策略[J].中国电力,2025,58(6):112-121. |
| WEI C H, SHAN L S, HU D D,et al .Optimal scheduling strategy of park-level virtual power plant for demand response[J].Electric Power,2025,58(6):112-121. | |
| [3] | 邱书琦,蹇照民,方立雄,等 .基于变分模态分解和集成学习的光伏发电预测[J].智慧电力,2024,52(3):32-38. |
| QIU S Q, JIAN Z M, FANG L X,et al .Photovoltaic power generation forecasting based on variational modal decomposition and ensemble learning[J].Smart Power,2024,52(3):32-38. | |
| [4] | 李璐,张泽端,毕贵红,等 .“双碳”目标下基于系统动力学的发电行业碳减排政策研究[J].电力系统保护与控制,2024,52(12):69-81. |
| LI L, ZHANG Z D, BI G H,et al .Carbon emission reduction policy in the power generation sector based on system dynamics with“dual carbon”targets[J].Power System Protection and Control,2024,52(12):69-81. | |
| [5] | 卢海明 .大规模分布式光伏发电对电力系统的影响[J].技术与市场,2022,29(11):119-120. |
| LU H M .The impact of large-scale distributed photovoltaic power generation on the power system[J].Technology and Market,2022,29(11):119-120. | |
| [6] | 陈明昊,朱月瑶,孙毅,等 .计及高渗透率光伏消纳与深度强化学习的综合能源系统预测调控[J].电工技术学报,2024,39(19):6054-6071. |
| CHEN M H, ZHU Y Y, SUN Y,et al .The predictive-control optimization method for park integrated energy system considering the high penetration of photovoltaics and deep reinforcement learning[J].Transactions of China Electrotechnical Society,2024,39(19):6054-6071. | |
| [7] | 郑国权,祝恩国,张海龙,等 .基于主从博弈的高比例光伏配电台区柔性互联规划[J].电力建设,2024,45(4):100-110. |
| ZHENG G Q, ZHU E G, ZHANG H L,et al .Flexible interconnection planning for distribution station areas of high-ratio photovoltaic based on master-slave game[J].Electric Power Construction,2024,45(4):100-110. | |
| [8] | 郝建姝,李焱 .大规模光伏接入配电网电压波动越限抑制研究[J].电网与清洁能源,2024,40(11):97-103. |
| HAO J S, LI Y .Research on voltage fluctuations and over-limit suppression of large-scale photovoltaic access to distribution networks[J].Power System and Clean Energy,2024,40(11):97-103. | |
| [9] | 秦菲,邵嘉兴,郭天超,等 .电能量市场中风光抽蓄一体化并网运行优化策略[J].全球能源互联网,2025,8(3):336-346. |
| QIN F, SHAO J X, GUO T C,et al .Optimization strategy for integrated grid connected operation of wind-photovoltaic-pumped hydro storage in the electricity energy market[J].Journal of Global Energy Interconnection,2025,8(3):336-346. | |
| [10] | 张文博,邢海军,聂立君,等 .考虑高渗透率可再生能源的新型电力系统可靠性评估综述[J].电测与仪表,2025,62(9):51-61. |
| ZHANG W B, XING H J, NIE L J,et al .Review of the novel power system reliability assessment with high penetration renewable energy[J].Electrical Measurement & Instrumentation,2025,62(9):51-61. | |
| [11] | KATARAY T, NITESH B, YARRAM B,et al .Integration of smart grid with renewable energy sources:opportunities and challenges:a comprehensive review[J].Sustainable Energy Technologies and Assessments,2023,58:103363. doi:10.1016/j.seta.2023.103363 |
| [12] | 刘洪波,刘珅诚,盖雪扬,等 .高比例新能源接入的主动配电网规划综述[J].发电技术,2024,45(1):151-161. doi:10.12096/j.2096-4528.pgt.22106 |
| LIU H B, LIU S C, GAI X Y,et al .Overview of active distribution network planning with high proportion of new energy access[J].Power Generation Technology,2024,45(1):151-161. doi:10.12096/j.2096-4528.pgt.22106 | |
| [13] | MEMARZADEH G, KEYNIA F .A new hybrid CBSA-GA optimization method and MRMI-LSTM forecasting algorithm for PV-ESS planning in distribution networks[J].Journal of Energy Storage,2023,72:108582. doi:10.1016/j.est.2023.108582 |
| [14] | ZHANG T, QIU W, ZHANG Z,et al .Optimal bidding strategy and profit allocation method for shared energy storage-assisted VPP in joint energy and regulation markets[J].Applied Energy,2023,329:120158. doi:10.1016/j.apenergy.2022.120158 |
| [15] | MEHMET EMRE Ö,ARI I, TUZKAYA G .A comprehensive review of the impacts of energy storage on power markets[J].Journal of Energy Storage,2024,91:111935. doi:10.1016/j.est.2024.111935 |
| [16] | 杨军,赵通,赵宇坤,等 .基于改进二进制粒子群优化的有源配电网优化方法[J].电气自动化,2022,44(3):48-49. |
| YANG J, ZHAO T, ZHAO Y K,et al .Active distribution network optimization method based on improved binary particle swarm optimization[J].Electrical Automation,2022,44(3):48-49. | |
| [17] | 朱自伟,黄彪,裘昕月,等 .基于平抑风光出力波动的主动配电网优化调度[J].太阳能学报,2022,43(5):90-97. |
| ZHU Z W, HUANG B, QIU X Y,et al .Optimal dispatching of active distribution network based on suppressing wind and photovoltaic power fluctuation[J].Acta Energiae Solaris Sinica,2022,43(5):90-97. | |
| [18] | 张克勇,王冠瑞,耿新,等 .含高比例光—储单元的主动配电网并网功率分布式协同控制策略[J].电力科学与技术学报,2022,37(2):147-155. |
| ZHANG K Y, WANG G R, GENG X,et al .Distributed cooperative control strategy for grid-connected power in ADN with high proportion of PV-ESS units[J].Journal of Electric Power Science and Technology,2022,37(2):147-155. | |
| [19] | 刘金豆,成杰,俞高伟 .基于低压直流配电网并网的并离网一体光储发电系统研究[J].华电技术,2021,43(4):63-70. |
| LIU J D, CHENG J, YU G W .Research on a PV-energy storage system with integration of grid-connection and disconnection modes based on low-pressure DC distribution network[J].Huadian Technology,2021,43(4):63-70. | |
| [20] | 王守相,程耀祥,赵倩宇,等 .考虑光储协调的配电网多阶段就地-分布式电压控制策略[J].电力自动化设备,2024,44(1):1-9. |
| WANG S X, CHENG Y X, ZHAO Q Y,et al .Multi-stage in situ-distributed voltage control strategy for distribution networks considering optical storage coordination[J].Electric Power Automation Equipment,2024,44(1):1-9. | |
| [21] | YI L, ZHANG H, WANG Y,et al .Multi-objective global dynamic optimal scheduling of smart building loads considering carbon emissions[J].Energy and Buildings,2023,301:113740. doi:10.1016/j.enbuild.2023.113740 |
| [22] | GUO J, WU D, WANG Y,et al .Co-optimization method research and comprehensive benefits analysis of regional integrated energy system[J].Applied Energy,2023,340:121034. doi:10.1016/j.apenergy.2023.121034 |
| [23] | 崔文倩,魏军强,赵云灏,等 .双碳目标下含重力储能的配电网多目标运行优化[J].电力建设,2023,44(4):45-53. |
| CUI W Q, WEI J Q, ZHAO Y H,et al .Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J].Electric Power Construction,2023,44(4):45-53. | |
| [24] | 卢颖,毛杰 .基于多目标优化的主动配电网三相鲁棒动态重构模型[J].自动化技术与应用,2023,42(1):21-25. |
| LU Y, MAO J .Three-phase robust dynamic reconfiguration model of active distribution network based on multi-objective optimization[J].Techniques of Automation and Applications,2023,42(1):21-25. | |
| [25] | 王钰,郝毅,王磊,等 .基于改进粒子群算法的多能微网多目标优化调度[J].电测与仪表,2023,60(11):29-36. |
| WANG Y, HAO Y, WANG L,et al .Multi-objective optimal dispatching for multi-energy microgrid based on improved particle swarm optimization algorithm[J].Electrical Measurement & Instrumentation,2023,60(11):29-36. | |
| [26] | 曹锦,陆飞,江友华 .基于改进粒子群算法的配电网多目标优化控制[J].电网与清洁能源,2022,38(5):95-103. |
| CAO J, LU F, JIANG Y H .Multi-objective optimal control of distribution networks based on improved particle swarm algorithm[J].Power System and Clean Energy,2022,38(5):95-103. | |
| [27] | 闫群民,董新洲,穆佳豪,等 .基于改进多目标粒子群算法的有源配电网储能优化配置[J].电力系统保护与控制,2022,50(10):11-19. |
| YAN Q M, DONG X Z, MU J H,et al .Optimal configuration of energy storage in an active distribution network based on improved multi-objective particle swarm optimization[J].Power System Protection and Control,2022,50(10):11-19. | |
| [28] | 徐泽,杨伟,张文强,等 .基于连锁环网与改进离散粒子群算法的多目标配电网重构[J].电力系统保护与控制,2021,49(6):114-123. |
| XU Z, YANG W, ZHANG W Q,et al .Multi-objective distribution network reconfiguration based on chain loops and improved binary particle swarm optimization[J].Power System Protection and Control,2021,49(6):114-123. | |
| [29] | 方磊,薛云霞,池宇琪,等 .分布式储能运行规划一体的多目标选址定容方法[J].智慧电力,2022,50(11):1-8. |
| FANG L, XUE Y X, CHI Y Q,et al .Multi-objective location and capacity determination method for distributed battery energy storage system considering operational planning[J].Smart Power,2022,50(11):1-8. | |
| [30] | 安东,杨德宇,武文丽,等 .基于改进多目标蜉蝣算法的配网电池储能系统最优选址定容[J].电力系统保护与控制,2022,50(10):31-39. |
| AN D, YANG D Y, WU W L,et al .Optimal location and sizing of battery energy storage systems in a distribution network based on a modified multi-objective mayfly algorithm[J].Power System Protection and Control,2022,50(10):31-39. | |
| [31] | 梁作宾,高山,王庆,等 .基于博弈策略的高渗透风电选址定容多目标规划与求解[J].电工技术,2021(15):1-4. |
| LIANG Z B, GAO S, WANG Q,et al .Multi-objective planning and solution for location and capacity of high-permeability wind power generation based on game strategy[J].Electric Engineering,2021(15):1-4. | |
| [32] | 赫卫国,华光辉,余晓燕,等 .多类型微电网接入的配电网两阶段规划方法[J].广东电力,2019,32(5):36-42. |
| HE W G, HUA G H, YU X Y,et al .Two-stage planning method for distribution network with multi-type microgrids[J].Guangdong Electric Power,2019,32(5):36-42. | |
| [33] | 刘建伟,李学斌,刘晓鸥 .有源配电网中分布式电源接入与储能配置[J].发电技术,2022,43(3):476-484. doi:10.12096/j.2096-4528.pgt.21068 |
| LIU J W, LI X B, LIU X O .Distributed power access and energy storage configuration in active distribution network[J].Power Generation Technology,2022,43(3):476-484. doi:10.12096/j.2096-4528.pgt.21068 | |
| [34] | 周红娟 .基于改进层次分析法的配网供电可靠性研究[J].云南电力技术,2019,47(1):99-102. |
| ZHOU H J .Research on power supply reliability of distribution network based on improved AHP method[J].Yunnan Electric Power,2019,47(1):99-102. | |
| [35] | 朱永灿,石琳,褚夏永,等 .面向负荷聚合商的工业用户调峰潜力评估方法研究[J].广东电力,2023,36(9):17-25. |
| ZHU Y C, SHI L, CHU X Y,et al .Research on peaking potential evaluation method of industrial enterprises for load aggregators[J].Guangdong Electric Power,2023,36(9):17-25. | |
| [36] | 贾开华,于云霞,范秀波,等 .基于AHP-EWM综合赋权和TOPSIS法的多能互补系统综合评价[J].中国电力,2023,56(7):228-238. |
| JIA K H, YU Y X, FAN X B,et al .Multi-criteria comprehensive evaluation of multi-energy complementary system based on AHP-EWM and TOPSIS method[J].Electric Power,2023,56(7):228-238. | |
| [37] | 赵鑫,郑文禹,侯智华,等 .基于粒子群优化算法的多能互补系统经济调度研究[J].华电技术,2021,43(4):14-20. |
| ZHAO X, ZHENG W Y, HOU Z H,et al .Research on economic dispatch of multi-energy complementary system based on particle swarm optimization[J].Huadian Technology,2021,43(4):14-20. |
| [1] | 胡泽灵, 郝俊红, 巨陈治, 马腾宇, 窦真兰, 李双江. 基于标准热阻法的压缩空气储能系统整体建模及能-㶲分析[J]. 发电技术, 2026, 47(1): 122-132. |
| [2] | 罗斌, 白小龙, 臧天磊, 黄燕, 张琳, 李萌, 张雪霞, 蒋永龙. 风光水互补发电系统研究综述[J]. 发电技术, 2025, 46(6): 1097-1111. |
| [3] | 陈锋, 路小敏, 沈冰, 王军鹏. 基于消纳-保供博弈的分布式储能双层规划模型[J]. 发电技术, 2025, 46(6): 1133-1143. |
| [4] | 张萍, 李永强, 杏华良. 基于变分模态分解的平抑风电波动混合储能容量优化配置[J]. 发电技术, 2025, 46(6): 1144-1153. |
| [5] | 张效伟, 衣振晓, 王凯. 基于改进自适应蜜獾算法优化时间卷积网络的车载锂离子电池健康状态估计[J]. 发电技术, 2025, 46(6): 1154-1163. |
| [6] | 张静姝, 刘倩, 姚晓乐, 徐超, 巨星. 应用于锂离子电池无源热管理与安全防护的水合盐复合相变材料[J]. 发电技术, 2025, 46(6): 1164-1175. |
| [7] | 陈梦东, 康伟, 邓占锋, 赵文强, 雷国斌. 低气压环境下固体蓄热材料的蓄释热特性研究[J]. 发电技术, 2025, 46(6): 1184-1191. |
| [8] | 李凌旭, 陈龙祥, 叶楷. 基于石块-沙子-导热油的多种组合混合储热性能研究[J]. 发电技术, 2025, 46(6): 1192-1199. |
| [9] | 李建林, 彭禹宸, 王茜, 姜晓霞, 王垒. 锂离子电池建模研究现状与展望[J]. 发电技术, 2025, 46(5): 857-871. |
| [10] | 邹博, 任建地, 许道明, 邓立生, 廖力达, 肖俊兵. 氯化物熔盐储热技术应用于新能源发电的研究进展[J]. 发电技术, 2025, 46(5): 872-884. |
| [11] | 马宁, 赵攀, 刘艾杰, 许文盼, 王江峰. 纯氢补燃型和天然气补燃型压缩空气储能系统特性与㶲经济性对比[J]. 发电技术, 2025, 46(5): 885-896. |
| [12] | 董福贵, 张伟. 考虑容量价值的独立新型储能电站运行策略优化研究[J]. 发电技术, 2025, 46(5): 897-908. |
| [13] | 马浩然, 袁至, 王维庆, 李骥. 考虑数据中心和储能接入的主动配电网经济调度研究[J]. 发电技术, 2025, 46(4): 748-757. |
| [14] | 王杰, 徐立军, 李笑竹, 樊小朝, 古丽扎提∙海拉提null, 王维庆. 计及灵活性不足风险的配电网智能软开关与多类型共享储能协调优化[J]. 发电技术, 2025, 46(4): 758-767. |
| [15] | 卫广宇, 应笑冬, 姚延军, 杨小芳, 翁楚迪, 彭勇刚, 李海龙. 计及荷电状态的并网型直流微电网功率协同控制策略[J]. 发电技术, 2025, 46(4): 788-796. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||