发电技术 ›› 2025, Vol. 46 ›› Issue (4): 818-828.DOI: 10.12096/j.2096-4528.pgt.25092
赵雅卓1, 张文杰1, 廖颖慧2,3, 林晋磊2,3, 张荣勇1, 段远源2,3
收稿日期:
2025-02-17
修回日期:
2025-04-05
出版日期:
2025-08-31
发布日期:
2025-08-21
作者简介:
基金资助:
Yazhuo ZHAO1, Wenjie ZHANG1, Yinghui LIAO2,3, Jinlei LIN2,3, Rongyong ZHANG1, Yuanyuan DUAN2,3
Received:
2025-02-17
Revised:
2025-04-05
Published:
2025-08-31
Online:
2025-08-21
Supported by:
摘要:
目的 针对核电厂低品位余热直接排放造成的海洋热污染问题,亟需探索高效解决方案以降低排海热负荷。为此,对不同类型余热源特性及其发电潜力进行了系统评估,为核电厂余热利用提供热经济性数据依据。 方法 总结了核电厂中各类低品位余热的特点,并分析了余热的不同利用方式及其发展现状;介绍了3种适用于该余热的发电技术,并结合实际案例对比分析了不同发电技术的热经济性能及不同余热源的回收潜力。 结果 核电厂二回路凝结饱和水的能质系数最高,发电利用潜力最大。此外,有机朗肯循环(organic Rankine cycle,ORC)是热经济性能最佳的余热发电方案,其平准化度电成本最低,为0.037 6美元/(kW⋅h),相对于喷射式有机闪蒸循环和卡琳娜循环分别降低了84%和78%;ORC发电功率为462.2 kW,具有较好的可行性;在回收低压缸乏汽余热场景下,ORC的可减排热负荷为360.3 MW,环保效益显著。 结论 ORC等余热发电技术可大幅降低排海热负荷,为我国核电厂的低品位余热利用与降低排海热负荷提供重要参考。
中图分类号:
赵雅卓, 张文杰, 廖颖慧, 林晋磊, 张荣勇, 段远源. 核电厂低品位余热发电技术研究[J]. 发电技术, 2025, 46(4): 818-828.
Yazhuo ZHAO, Wenjie ZHANG, Yinghui LIAO, Jinlei LIN, Rongyong ZHANG, Yuanyuan DUAN. Research on Power Generation Technologies for Low-Grade Waste Heat in Nuclear Power Plants[J]. Power Generation Technology, 2025, 46(4): 818-828.
余热来源 | 状态 | 温度/℃ | 压力/kPa | 流量/(kg/s) | 干度 |
---|---|---|---|---|---|
低压缸乏汽 | 气液共存 | 41.7 | 8.10 | 828.30 | 0.911 4 |
凝结饱和水 | 液态 | 96.7 | 90.04 | 79.50 | 0 |
温排水 | 液态 | 29.6 | 101.33 | 60 624.55 | 0 |
表1 核电厂低品位余热的主要来源及其特点
Tab. 1 Main sources and characteristics of low-grade waste heat in nuclear power plants
余热来源 | 状态 | 温度/℃ | 压力/kPa | 流量/(kg/s) | 干度 |
---|---|---|---|---|---|
低压缸乏汽 | 气液共存 | 41.7 | 8.10 | 828.30 | 0.911 4 |
凝结饱和水 | 液态 | 96.7 | 90.04 | 79.50 | 0 |
温排水 | 液态 | 29.6 | 101.33 | 60 624.55 | 0 |
余热利用方式 | 适用的余热源 | 优点 | 缺点 |
---|---|---|---|
农业种植[ | 二回路低压缸乏汽和三回路温排水 | 排海热负荷低、经济性好、环境污染小 | 所需的温室面积与水产养殖面积极大,难以消纳全部的低品位余热 |
市政与工业供热[ | 二回路低压缸乏汽、凝结饱和水、三回路温排水 | 可满足大量供热需求,环保效益好 | 供热管路布置范围远、热损耗高、输送成本高;受供热端需求影响大,季节性明显 |
海水淡化[ | 二回路凝结饱和水 | 可实现水电联产,缓解核电机组远程取淡水、用淡水压力 | 淡化成本高、设备寿命短,淡化后废弃物处理难度大 |
表2 不同余热利用方式适用的余热源及其优缺点
Tab. 2 Applicable waste heat sources and advantages and disadvantages of different waste heat utilization methods
余热利用方式 | 适用的余热源 | 优点 | 缺点 |
---|---|---|---|
农业种植[ | 二回路低压缸乏汽和三回路温排水 | 排海热负荷低、经济性好、环境污染小 | 所需的温室面积与水产养殖面积极大,难以消纳全部的低品位余热 |
市政与工业供热[ | 二回路低压缸乏汽、凝结饱和水、三回路温排水 | 可满足大量供热需求,环保效益好 | 供热管路布置范围远、热损耗高、输送成本高;受供热端需求影响大,季节性明显 |
海水淡化[ | 二回路凝结饱和水 | 可实现水电联产,缓解核电机组远程取淡水、用淡水压力 | 淡化成本高、设备寿命短,淡化后废弃物处理难度大 |
参数 | 数值 |
---|---|
工质泵等熵效率ηpump | 0.8 |
膨胀机等熵效率ηtur | 0.8 |
电动机效率ηmotor | 0.98 |
发电机效率ηgen | 0.98 |
表3 系统功率设备的效率
Tab. 3 Efficiency of system power equipment
参数 | 数值 |
---|---|
工质泵等熵效率ηpump | 0.8 |
膨胀机等熵效率ηtur | 0.8 |
电动机效率ηmotor | 0.98 |
发电机效率ηgen | 0.98 |
[1] | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
[2] | 吴熙,陈康文,郭其胜,等 .考虑核电灵活参与调峰的多源联合运行低碳经济调度[J].电力工程技术,2024,43(6):1-11. |
WU X, CHEN K W, GUO Q S,et al .A multi-source combined operation low carbon economy dispatch considering flexible participation of nuclear power in peaking[J].Electric Power Engineering Technology,2024,43(6):1-11. | |
[3] | 崔文浩,郑胜,秦雄杰,等 .基于多尺度时间窗口的核电运行数据关联性分析方法研究[J].南方能源建设,2023,10(2):143-150. |
CUI W H, ZHENG S, QIN X J,et al .Research on correlation analysis method for nuclear power operation data based on multi-scale time window[J].Southern Energy Construction,2023,10(2):143-150. | |
[4] | 刘学成,杨军,申锦鹏,等 .基于系统动力学模型的电力系统等效惯量时空演变趋势研究[J].全球能源互联网,2024,7(5):579-590. |
LIU X C, YANG J, SHEN J P,et al .Analysis of spatiotemporal evolution trend of equivalent inertia in power system based on system dynamics model[J].Journal of Global Energy Interconnection,2024,7(5):579-590. | |
[5] | 梁毅,李华,刘航旭,等 .计及核电风险量化的多源互补调峰调度方法[J].电力工程技术,2024,43(2):124-133. |
LIANG Y, LI H, LIU H X,et al .Multi source complementary peak shaving scheduling method considering nuclear power risk quantification[J].Electric Power Engineering Technology,2024,43(2):124-133. | |
[6] | 余娜 .中国核电站冷却水“热污染”调查[J].能源,2016(2):82-88. |
YU N .Investigation on “thermal pollution” of cooling water in China nuclear power station[J].Energy,2016(2):82-88. | |
[7] | SRIVASTAVA M, SARKAR J, SARKAR A,et al .Thermo-economic feasibility study to utilize ORC technology for waste heat recovery from Indian nuclear power plants[J].Energy,2024,298:131338. doi:10.1016/j.energy.2024.131338 |
[8] | GABBAR H A, BARRY STOUTE C A, STEELE D,et al .Evaluation and optimization of thermoelectric generator network for waste heat utilization in nuclear power plants and non-nuclear energy applications[J].Annals of Nuclear Energy,2017,101:454-464. doi:10.1016/j.anucene.2016.12.001 |
[9] | ZHANG J R, TIAN Z X, GUO K L,et al .Investigations on thermoelectric characteristic of heat pipe thermoelectric generator waste heat utilization device in nuclear power system[J].Nuclear Engineering and Design,2023,407:112299. doi:10.1016/j.nucengdes.2023.112299 |
[10] | 林燕萍,王威,童中山,等 .我国滨海核电厂温排水及液态流出物排放研究进展[J].海洋湖沼通报,2024,46(1):210-216. |
LIN Y P, WANG W, TONG Z S,et al .Research progress on thermal discharge and liquid effluent from coastal nuclear power plants in China[J].Transactions of Oceanology and Limnology,2024,46(1):210-216. | |
[11] | 胡枭,李少伦,王丹,等 .㶲在综合能源系统中的理论、模型、应用综述及展望[J].电力建设,2024,45(3):1-15. |
HU X, LI S L, WANG D,et al .Review and prospect of exergy in theory,modelling,and applications of integrated energy systems[J].Electric Power Construction,2024,45(3):1-15. | |
[12] | 刘永叶,刘森林,陈晓秋 .核电厂温排水余热综合利用方案设计的初步研究[J].电力科技与环保,2012,28(2):48-51. |
LIU Y Y, LIU S L, CHEN X Q .Preliminary study on the design of comprehensive utilization scheme of waste heat in thermal discharge of nuclear power plant[J].Electric Power Technology and Environmental Protection,2012,28(2):48-51. | |
[13] | 亓浙兴 .日本核电站温排水的渔业利用[J].水产科技情报,1987,14(2):28. |
QI Z X .Fishery utilization of warm drainage water from nuclear power plants in Japan[J].Fisheries Science and Technology Information,1987,14(2):28. | |
[14] | 於凡,杨东 .核电站冷却水余热利用问题的研究初探[J].能源与环境,2009(2):7-9. |
YU F, YANG D .Preliminary study on the utilization of cooling water waste heat in nuclear power plants[J].Energy and Environment,2009(2):7-9. | |
[15] | 青岛罗非鱼良种场 .国家级水产原良种场风采——青岛罗非鱼良种场简介[J].中国水产,2001(8):53. |
Qingdao Tilapia Seed Farm .Showcase of national-level aquatic seed production farms:introduction to Qingdao Tilapia Seed Farm[J].China Fisheries,2001(8):53. | |
[16] | 中国电力报 .核能供热基本原理[EB/OL].(2022-06-08)[2025-02-17].. |
China Electric Power News .Basic principles of nuclear heating[EB/OL].(2022-06-08)[2025-02-17].. | |
[17] | 董卿,杨秀萍 .记者蹲点“硬核”供暖又一年[EB/OL].(2022-11-24)[2025-02-17].. |
DONG Q, YANG X P .Journalists on-site:another year of “hardcore” heating[EB/OL].(2022-11-24)[2025-02-17].. | |
[18] | 威海新闻网 .海阳→乳山!我国首个跨地级市核能供热工程投运[EB/OL].(2023-11-28)[2025-02-17].. |
News Weihai .Haiyang→Rushan!China’s first cross-prefecture-level nuclear heating project put into operation[EB/OL].(2023-11-28)[2025-02-17].. | |
[19] | 烟台市人民政府 .一城供热,两市同暖!我国首个跨地级市核能供热工程在海阳投远[EB/OL].(2023-11-28)[2025-02-17].. |
The People’s Government of Yantai .One city heats,two cities warm!China’s first cross-prefecture-level nuclear heating project put into operation in Haiyang[EB/OL].(2023-11-28)[2025-02-17].. | |
[20] | 中央纪委国家监委网站 .零碳供暖背后的硬“核”力量 走近全国最大核能供热项目“暖核一号”[EB/OL].(2022-12-19)[2025-02-17].. |
Central Commission for Discipline Inspection and National Supervisory Commission Website .The “hardcore” power behind zero-carbon heating: approaching the nation’s largest nuclear heating project “Warm Core No.1”[EB/OL].(2022-12-19)[20250-02-17].. | |
[21] | 中国广核集团 .突破3000亿!红沿河核电站助力东北地区打好蓝天保卫战[EB/OL].(2024-08-20)[2025-02-17].. |
China General Nuclear Power Group .Exceeding 300 billion! Hongyanhe Nuclear Power Station helps Northeast China fight the battle for blue skies[EB/OL].(2024-08-20)[2025-02-17].. | |
[22] | 郭翔,白涌泉 .东北地区首个核能供暖项目正式供热[EB/OL].(2022-11-01)[2025-02-17].. |
GUO X, BAI Y Q .Northeast China’s first nuclear heating project officially begins operation[EB/OL].(2022-11-01)[2025-02-17].. | |
[23] | 牟思南 .东北地区首个!辽宁红沿河核电站核能供暖项目正式供热[EB/OL].(2022-11-03)[2025-02-17].. |
MOU S N .Northeast China’s first!Liaoning Hongyanhe Nuclear Power Station’s nuclear heating project officially begins operation[EB/OL].(2022-11-03)[2025-02-17].. | |
[24] | 中国核工业集团有限公司 .我国南方首个核能供热示范工程正式投运[EB/OL].(2021-12-06)[2025-02-17].. |
China National Nuclear Corporation .China’s first nuclear heating demonstration project in the south officially put into operation[EB/OL].(2021-12-06)[2025-02-17].. | |
[25] | AXPO .Beznau Power Plant Axpo[EB/OL].(2024-03-22)[2025-02-17].. |
[26] | POWER .District heating supply from nuclear power plants[EB/OL].(2022-02-01)[2025-02-17].. |
[27] | Traceyhonney .Russia’s floating NPP supplies heat to second Pevek district[EB/OL].(2022-07-26)[2025-02-17].. |
[28] | 苑佳卉,吴元柱 .核电站温排水现状研究[J].科技视界,2015(12):231. |
YUAN J H, WU Y Z .Study on the present situation of thermal drainage in nuclear power plant[J].Science & Technology Vision,2015(12):231. | |
[29] | 宋二猛,贾海军,王玉华,等 .高温多效蒸馏及在核能海水淡化方面的应用[J].水处理技术,2005,31(7):11-14. |
SONG E M, JIA H J, WANG Y H,et al .Technology of high temperature vte-med and progress in nuclear desalination research in China[J].Technology of Water Treatment,2005,31(7):11-14. | |
[30] | 郑文祥,董铎,张达芳 .摩洛哥坦坦地区核能海水淡化示范项目[J].核动力工程,2000,21(1):48-51. |
ZHENG W X, DONG D, ZHANG D F .Project of a nuclear desalination demonstration plant for Tan Tan Morocco[J].Nuclear Power Engineering,2000,21(1):48-51. | |
[31] | 陈微,张立君 .海水淡化技术在国内外核电站的应用[J].水处理技术,2018,44(11):128-132. |
CHEN W, ZHANG L J .Application of seawater desalination technology in nuclear power plant[J].Technology of Water Treatment,2018,44(11):128-132. | |
[32] | 李健,武江元,杨震,等 .地热发电技术及其关键影响因素综述[J].热力发电,2022,51(3):1-8. |
LI J, WU J Y, YANG Z,et al .Review of geothermal power generation technologies and key influencing factors[J].Thermal Power Generation,2022,51(3):1-8. | |
[33] | 陈然,刘强,蒙冬玉 .过冷度对地热发电非共沸工质有机朗肯循环热力性能的影响[J].发电技术,2020,41(2):190-197. doi:10.12096/j.2096-4528.pgt.19098 |
CHEN R, LIU Q, MENG D Y .Effect of subcooling on thermal performance of organic Rankine cycle with zeotropic mixture in geothermal power generation[J].Power Generation Technology,2020,41(2):190-197. doi:10.12096/j.2096-4528.pgt.19098 | |
[34] | EHYAEI M A, AHMADI A, ASSAD M EL HAJ,et al .Investigation of an integrated system combining an organic Rankine cycle and absorption chiller driven by geothermal energy:energy,exergy,and economic analyses and optimization[J].Journal of Cleaner Production,2020,258:120780. doi:10.1016/j.jclepro.2020.120780 |
[35] | LIU Q, DUAN Y Y, YANG Z .Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids[J].Energy,2013,63:123-132. doi:10.1016/j.energy.2013.10.035 |
[36] | HABIBOLLAHZADE A, PETERSEN K J, ALIAHMADI M,et al .Comparative thermoeconomic analysis of geothermal energy recovery via super/transcritical CO2 and subcritical organic Rankine cycles[J].Energy Conversion and Management,2022,251:115008. doi:10.1016/j.enconman.2021.115008 |
[37] | 顾煜炯,陈礼敏,耿直 .不同太阳能热源下混合工质ORC系统性能分析[J].发电技术,2018,39(2):177-187. |
GU Y J, CHEN L M, GENG Z .Performance analysis of ORC system for non-zeotropic mixtures under different solar energy sources[J].Power Generation Technology,2018,39(2):177-187. | |
[38] | 李晶,裴刚,季杰 .太阳能有机朗肯循环低温热发电关键因素分析[J].化工学报,2009,60(4):826-832. |
LI J, PEI G, JI J .Analysis of key factors in low-temperature solar-thermal-electric power generation with organic Rankine cycle[J].Journal of the Chemical Industry and Engineering Society of China,2009,60(4):826-832. | |
[39] | CHEN Y Z, XU J Z, ZHAO D D,et al .Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling,heating and power system with organic Rankine cycle and absorption heat pump[J].Energy,2021,230:120717. doi:10.1016/j.energy.2021.120717 |
[40] | OYEKALE J, PETROLLESE M, HEBERLE F,et al .Exergetic and integrated exergoeconomic assessments of a hybrid solar-biomass organic Rankine cycle cogeneration plant[J].Energy Conversion and Management,2020,215:112905. doi:10.1016/j.enconman.2020.112905 |
[41] | KARIMI M H, CHITGAR N, EMADI M ALI,et al .Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle[J].International Journal of Hydrogen Energy,2020,45(11):6262-6277. doi:10.1016/j.ijhydene.2019.12.143 |
[42] | BEHZADI A, ARABKOOHSAR A, GHOLAMIAN E .Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic Rankine cycle/thermoelectric generator using different gasification agents[J].Energy,2020,201:117640. doi:10.1016/j.energy.2020.117640 |
[43] | XIE P, LONG R, LIU Z,et al .Working fluid selection of organic Rankine cycle for low-temperature industrial waste heat utilization[J].Journal of Engineering Thermophysics,2016,37(9):1834-1837. |
[44] | FANG Y Y, BIAN Y Y, WANG T S,et al .Optimal choice of working fluids of organic Rankine cycle for industrial waste heat recovery[J].Refrigeration and Air-Conditioning,2018,18(3):25-28. |
[45] | 黄晓艳,吴家正,王海鹰,等 .中低温工业余热ORC回收装置的工质发展与应用[J].节能技术,2012,30(1):34-38. |
HUANG X Y, WU J Z, WANG H Y,et al .Advances in research and application of working fluids for ORC waste heat recovery apparatus[J].Energy Conservation Technology,2012,30(1):34-38. | |
[46] | HO T, MAO S S, GREIF R .Comparison of the organic flash cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J].Energy,2012,42(1):213-223. doi:10.1016/j.energy.2012.03.067 |
[47] | MONDAL S, ALAM S, DE S .Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector[J].Energy,2018,163:849-862. doi:10.1016/j.energy.2018.08.160 |
[48] | NEMATI A, NAMI H, YARI M .Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies[J].Renewable Energy,2018,115:1231-1248. doi:10.1016/j.renene.2017.08.096 |
[49] | BACCIOLI A, ANTONELLI M, DESIDERI U .Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery[J].Applied Energy,2017,199:69-87. doi:10.1016/j.apenergy.2017.04.058 |
[50] | WANG Q, MACIÁN-JUAN R, LI D T .Analysis and assessment of a novel organic flash Rankine cycle (OFRC) system for low-temperature heat recovery[J].Energy Science & Engineering,2022,10(8):3023-3043. doi:10.1002/ese3.1186 |
[51] | HO T, MAO S S, GREIF R .Increased power production through enhancements to the organic flash cycle (OFC)[J].Energy,2012,45(1):686-695. doi:10.1016/j.energy.2012.07.023 |
[52] | LI T L, GAO H Y, GAO X .Synergetic mechanism of organic Rankine flash cycle with ejector for geothermal power generation enhancement[J].Journal of Cleaner Production,2022,375:134174. doi:10.1016/j.jclepro.2022.134174 |
[53] | 聂晶 .基于朗肯循环和卡琳娜循环的中低温余热动力循环分析[J].制冷,2015,34(3):40-44. |
NIE J .Power cycle analysis for mid-low temperature waste heat resource based on rankin cycle and kalina cycle[J].Refrigeration,2015,34(3):40-44. | |
[54] | 彭斌,刘帅,刘慧鑫,等 .不同工质对有机朗肯循环低温余热发电系统性能的影响研究[J].热力发电,2022,51(2):43-48. |
PENG B, LIU S, LIU H X,et al .Influence of different working fluids on performance of organic Rankine cycle low temperature waste heat power generation system[J].Thermal Power Generation,2022,51(2):43-48. | |
[55] | LI J, YANG Z, YU Z T,et al .Influences of climatic environment on the geothermal power generation potential[J].Energy Conversion and Management,2022,268:115980. doi:10.1016/j.enconman.2022.115980 |
[56] | TURTON R .Analysis,synthesis,and design of chemical processes[M].3rd ed.Upper Saddle River,NJ:Prentice Hall,2009:1-6. |
[57] | Engineering Chemical .2023 CEPCI annual average value decreases from previous year:Chemical Engineering Page 1[EB/OL].(2024-03-25)[2025-02-17].. |
[1] | 徐浩然, 张瑾昀, 马歆, 雷文强, 曹杰铭. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46(3): 454-466. |
[2] | 唐平. 660 MW核电机组一次调频实验及动态特性仿真分析[J]. 发电技术, 2023, 44(6): 833-841. |
[3] | 郑开云. 超临界二氧化碳循环发电技术应用[J]. 发电技术, 2020, 41(4): 399-406. |
[4] | 陈然,刘强,蒙冬玉. 过冷度对地热发电非共沸工质有机朗肯循环热力性能的影响[J]. 发电技术, 2020, 41(2): 190-197. |
[5] | 吴祖胜,彭翠玲. 核电厂风冷冷水机组框架结构的力学分析与评定[J]. 发电技术, 2018, 39(5): 483-486. |
[6] | 顾煜炯,陈礼敏,耿直. 不同太阳能热源下混合工质ORC系统性能分析[J]. 发电技术, 2018, 39(2): 177-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||