发电技术 ›› 2025, Vol. 46 ›› Issue (1): 42-57.DOI: 10.12096/j.2096-4528.pgt.24117
王森1,2, 马力群1,2, 侯文杰3, 安周建3, 张东3, Pea Hamir Johan Mombeki3,4
收稿日期:
2024-07-24
修回日期:
2024-09-26
出版日期:
2025-02-28
发布日期:
2025-02-27
作者简介:
基金资助:
Sen WANG1,2, Liqun MA1,2, Wenjie HOU3, Zhoujian AN3, Dong ZHANG3, Hamir Johan Mombeki Pea3,4
Received:
2024-07-24
Revised:
2024-09-26
Published:
2025-02-28
Online:
2025-02-27
Supported by:
摘要:
目的 相变储热技术是近年来最受关注的能源存储与管理技术之一,对实现能源综合梯度利用和提高能源利用效率具有重要意义。水合盐基无机复合相变材料在能源存储和热管理领域表现出巨大的应用潜力。通过分析材料物性特征及其在电池热管理领域应用情况,明确其在物性改良以及应用层面面临的技术挑战,并提出相应的改进策略,为推动水合盐基无机复合相变材料的应用提供思路。 方法 通过分析近年来国内外有关水合盐相变材料的研究成果,讨论了添加剂改性、合理封装等方法对水合盐相变材料的过冷、相分离和液相泄漏等固有缺陷的改善效果,以及对相变温度、潜热、热导率等热物性和热循环稳定性的影响。 结果 改性技术明显改善了水合盐相变材料的固有缺陷,显著提高了材料的热导率和热循环稳定性。此外,水合盐基无机复合相变材料在锂离子电池热管理中表现出优异的性能,显著降低了电池最高温度和最大温差,从而提升了电池的整体性能和安全性。 结论 水合盐基无机复合相变材料的大规模应用仍面临材料热稳定性和成本等挑战,未来研究应进一步优化这些材料的组成和结构,开发新型封装材料和添加剂,以全面提高材料的综合性能。特别是在锂离子电池热管理方面,应加强材料热物性特征与电池电化学性能的耦合研究,为设计高效、安全的电池热管理系统提供充足的理论和实验依据。
中图分类号:
王森, 马力群, 侯文杰, 安周建, 张东, Pea Hamir Johan Mombeki. 水合盐基无机复合相变材料及其在电池热管理中的应用研究进展[J]. 发电技术, 2025, 46(1): 42-57.
Sen WANG, Liqun MA, Wenjie HOU, Zhoujian AN, Dong ZHANG, Hamir Johan Mombeki Pea. Research Progress on Hydrated Salt-Based Inorganic Composite Phase Change Materials and Their Applications in Battery Thermal Management[J]. Power Generation Technology, 2025, 46(1): 42-57.
水合盐 | 相变温度/℃ | 相变潜热/(kJ⋅kg-1) | 密度/(kg⋅m-3) |
---|---|---|---|
CaCl2⋅6H2O | 29.0 | 191.0 | 1 562 |
Na2SO4⋅10H2O | 32.4 | 254.0 | 1 485 |
Na2HPO4⋅12H2O | 34.5 | 264.0 | 1 422 |
Na2S2O3⋅5H2O | 48.5 | 197.5 | 1 600 |
CH3COONa⋅3H2O | 58.0 | 246.0 | 1 450 |
Ba(OH)2⋅8H2O | 78.0 | 265.7 | 1 937 |
Mg(NO3)2⋅6H2O | 89.0 | 162.8 | 1 550 |
KAl(SO4)2⋅12H2O | 91.0 | 184.0 | 1 757 |
MgCl2⋅6H2O | 117.0 | 168.6 | 1 450 |
表1 部分常用水合盐相变材料及其热物性
Tab. 1 Some commonly used hydrated salt PCMs and their thermal properties
水合盐 | 相变温度/℃ | 相变潜热/(kJ⋅kg-1) | 密度/(kg⋅m-3) |
---|---|---|---|
CaCl2⋅6H2O | 29.0 | 191.0 | 1 562 |
Na2SO4⋅10H2O | 32.4 | 254.0 | 1 485 |
Na2HPO4⋅12H2O | 34.5 | 264.0 | 1 422 |
Na2S2O3⋅5H2O | 48.5 | 197.5 | 1 600 |
CH3COONa⋅3H2O | 58.0 | 246.0 | 1 450 |
Ba(OH)2⋅8H2O | 78.0 | 265.7 | 1 937 |
Mg(NO3)2⋅6H2O | 89.0 | 162.8 | 1 550 |
KAl(SO4)2⋅12H2O | 91.0 | 184.0 | 1 757 |
MgCl2⋅6H2O | 117.0 | 168.6 | 1 450 |
参数 | 特点 |
---|---|
热性能 | 合适的相变温度,高比热容、高潜热、高热导率 |
化学性能 | 高化学稳定性,无毒,无腐蚀性,非爆炸性,不可燃性 |
物理性能 | 高密度、低蒸气压,体积变化小,熔化一致 |
动力学特性 | 过冷度低,成核速率快,结晶速率快 |
经济性 | 成本低廉,原料易得,具有工业化基础 |
表2 理想相变材料的性能
Tab. 2 Properties of ideal PCM
参数 | 特点 |
---|---|
热性能 | 合适的相变温度,高比热容、高潜热、高热导率 |
化学性能 | 高化学稳定性,无毒,无腐蚀性,非爆炸性,不可燃性 |
物理性能 | 高密度、低蒸气压,体积变化小,熔化一致 |
动力学特性 | 过冷度低,成核速率快,结晶速率快 |
经济性 | 成本低廉,原料易得,具有工业化基础 |
成核剂类型 | 水合盐相变材料 | 成核剂 | 过冷度/℃ | 成核剂质量分数/% | 来源 | |
---|---|---|---|---|---|---|
未添加成核剂 | 添加成核剂后 | |||||
无机水合盐类成核剂 | 改性CaCl2⋅6H2O | SrCl2⋅6H2O | — | 0.95 | 2 | 文献[ |
75% Na2SO4⋅10H2O-5% KCl-20% NH4Cl | Na2B4O7⋅10H2O | 10.8 | 0.7 | 3 | 文献[ | |
CH3COONa⋅3H2O | Na4P2O7⋅10H2O | 约40 | 4 | 1.5 | 文献[ | |
CH3COONa⋅3H2O | Na2HPO4⋅12H2O (CMC) | 不结晶 | 4 | 5 (3) | 文献[ | |
100% CH3COONa⋅3H2O-10% CH3CONH2 | Na2HPO4⋅12H2O | >30 | 0.34 | 4 | 文献[ | |
CH3COONa⋅3H2O | Na2HPO4⋅12H2O | 23 | 2 | 2 | 文献[ | |
CaCl2⋅6H2O | SrCl2⋅6H2O (Ba(OH)2) | 不结晶 | 1.07 | 1.5 (1.5) | 文献[ | |
Na2S2O3⋅5H2O | Na4P2O7⋅10H2O | 不结晶 | 4.3 | 0.08 | 文献[ | |
Ba(OH)2⋅8H2O | Ba(OH)2⋅H2O | 约6 | 约1 | 4 | 文献[ | |
Na2SO4⋅10H2O | Na2P4O7⋅10H2O | — | 1.5 | 5 | 文献[ | |
纳米成核剂 | Na2HPO4⋅12H2O | 纳米石墨粉 | 13 | 4.9 | 4 | 文献[ |
CaCl2⋅6H2O | γ-Al2O3 | — | 0.23 | 1 | 文献[ | |
Na2SO4⋅10H2O-Na2HPO4⋅12H2O | α-Al2O3 (Na2B4O7⋅10H2O) | 7.8 | 1.6 | 4.5 (1) | 文献[ | |
CH3COONa⋅3H2O | 生物纳米甲壳素颗粒 | 不结晶 | 0.89 | 1 | 文献[ | |
100% CH3COONa⋅3H2O-10% CH3CONH2 | 颗粒尺寸为3 μm的Na2HPO4⋅12H2O(颗粒尺寸为30 nm的混合AlN) | 不结晶 | 0.27 | 4(5) | 文献[ |
表3 各类成核剂对水合盐相变材料过冷度的改善效果
Tab. 3 Improvement effect of various nucleating agents on the supercooling of hydrated salt PCM
成核剂类型 | 水合盐相变材料 | 成核剂 | 过冷度/℃ | 成核剂质量分数/% | 来源 | |
---|---|---|---|---|---|---|
未添加成核剂 | 添加成核剂后 | |||||
无机水合盐类成核剂 | 改性CaCl2⋅6H2O | SrCl2⋅6H2O | — | 0.95 | 2 | 文献[ |
75% Na2SO4⋅10H2O-5% KCl-20% NH4Cl | Na2B4O7⋅10H2O | 10.8 | 0.7 | 3 | 文献[ | |
CH3COONa⋅3H2O | Na4P2O7⋅10H2O | 约40 | 4 | 1.5 | 文献[ | |
CH3COONa⋅3H2O | Na2HPO4⋅12H2O (CMC) | 不结晶 | 4 | 5 (3) | 文献[ | |
100% CH3COONa⋅3H2O-10% CH3CONH2 | Na2HPO4⋅12H2O | >30 | 0.34 | 4 | 文献[ | |
CH3COONa⋅3H2O | Na2HPO4⋅12H2O | 23 | 2 | 2 | 文献[ | |
CaCl2⋅6H2O | SrCl2⋅6H2O (Ba(OH)2) | 不结晶 | 1.07 | 1.5 (1.5) | 文献[ | |
Na2S2O3⋅5H2O | Na4P2O7⋅10H2O | 不结晶 | 4.3 | 0.08 | 文献[ | |
Ba(OH)2⋅8H2O | Ba(OH)2⋅H2O | 约6 | 约1 | 4 | 文献[ | |
Na2SO4⋅10H2O | Na2P4O7⋅10H2O | — | 1.5 | 5 | 文献[ | |
纳米成核剂 | Na2HPO4⋅12H2O | 纳米石墨粉 | 13 | 4.9 | 4 | 文献[ |
CaCl2⋅6H2O | γ-Al2O3 | — | 0.23 | 1 | 文献[ | |
Na2SO4⋅10H2O-Na2HPO4⋅12H2O | α-Al2O3 (Na2B4O7⋅10H2O) | 7.8 | 1.6 | 4.5 (1) | 文献[ | |
CH3COONa⋅3H2O | 生物纳米甲壳素颗粒 | 不结晶 | 0.89 | 1 | 文献[ | |
100% CH3COONa⋅3H2O-10% CH3CONH2 | 颗粒尺寸为3 μm的Na2HPO4⋅12H2O(颗粒尺寸为30 nm的混合AlN) | 不结晶 | 0.27 | 4(5) | 文献[ |
类型 | 水合盐相变材料 | 导热增强剂 | 导热增强剂质量分数/% | 热导率提升幅度/% | 来源 |
---|---|---|---|---|---|
高导热纳米颗粒 | Na2S2O3⋅5H2O | 石墨纳米片 | 7 | 155.33 | 文献[ |
碳纳米管 | 249.61 | ||||
Na2HPO4⋅12H2O | 纳米氧化铁(α-Fe2O3) | 0.2 | 90.8 | 文献[ | |
KAl(SO4)2⋅12H2O-Na2SO4⋅10H2O | 纳米碳颗粒 | 1 | 66.7 | 文献[ | |
高导热多孔介质 | K2HPO4⋅3H2O-NaH2PO4⋅2H2O-Na2S2O3⋅5H2O-H2O | 改性膨胀石墨 | 19.29 | 1 230 | 文献[ |
CH3COONa⋅3H2O | 泡沫铜 | 22.8 | 176 | 文献[ | |
Na2HPO4⋅12H2O | 膨胀石墨 | 6 | 340 | 文献[ | |
CH3COONa⋅3H2O | 膨胀石墨 | 7 | 92.47 | 文献[ | |
Na2S2O3⋅5H2O-CH3COONa⋅3H2O | 膨胀石墨 | 8 | 290.4 | 文献[ | |
CH3COONa⋅3H2O | 膨胀石墨 | 3 | 114.6 | 文献[ | |
CH3COONa⋅3H2O | 50目膨胀石墨 | 5 | 187.9 | 文献[ | |
80目膨胀石墨 | 172.4 | ||||
100目膨胀石墨 | 156.9 | ||||
改性CaCl2⋅6H2O | 50目膨胀石墨 | 15 | 623.1 | 文献[ | |
80目膨胀石墨 | 518.1 | ||||
100目膨胀石墨 | 476.2 |
表4 各类导热增强剂的传热强化效果
Tab. 4 Heat transfer enhancement effect of various types of thermal conductivity enhancers
类型 | 水合盐相变材料 | 导热增强剂 | 导热增强剂质量分数/% | 热导率提升幅度/% | 来源 |
---|---|---|---|---|---|
高导热纳米颗粒 | Na2S2O3⋅5H2O | 石墨纳米片 | 7 | 155.33 | 文献[ |
碳纳米管 | 249.61 | ||||
Na2HPO4⋅12H2O | 纳米氧化铁(α-Fe2O3) | 0.2 | 90.8 | 文献[ | |
KAl(SO4)2⋅12H2O-Na2SO4⋅10H2O | 纳米碳颗粒 | 1 | 66.7 | 文献[ | |
高导热多孔介质 | K2HPO4⋅3H2O-NaH2PO4⋅2H2O-Na2S2O3⋅5H2O-H2O | 改性膨胀石墨 | 19.29 | 1 230 | 文献[ |
CH3COONa⋅3H2O | 泡沫铜 | 22.8 | 176 | 文献[ | |
Na2HPO4⋅12H2O | 膨胀石墨 | 6 | 340 | 文献[ | |
CH3COONa⋅3H2O | 膨胀石墨 | 7 | 92.47 | 文献[ | |
Na2S2O3⋅5H2O-CH3COONa⋅3H2O | 膨胀石墨 | 8 | 290.4 | 文献[ | |
CH3COONa⋅3H2O | 膨胀石墨 | 3 | 114.6 | 文献[ | |
CH3COONa⋅3H2O | 50目膨胀石墨 | 5 | 187.9 | 文献[ | |
80目膨胀石墨 | 172.4 | ||||
100目膨胀石墨 | 156.9 | ||||
改性CaCl2⋅6H2O | 50目膨胀石墨 | 15 | 623.1 | 文献[ | |
80目膨胀石墨 | 518.1 | ||||
100目膨胀石墨 | 476.2 |
图6 真空浸渍法制备水合盐/膨胀蛭石复合相变材料过程示意图
Fig. 6 Schematic diagram of the process of preparing hydrated salt/expanded vermiculite composite PCM by vacuum impregnation
1 | MEHRALI M, ELSHOF J E TEN, SHAHI M,et al .Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material[J].Chemical Engineering Journal,2021,405:126624. doi:10.1016/j.cej.2020.126624 |
2 | 郝宁,蒋俊,刘传亮,等 .大型中温斜温层储水罐蓄热性能分析[J].电力科技与环保,2024,40(6):635-645. |
HAO N, JIANG J, LIU C L,et al .Analysis of heat storage performance of large medium-temperature thermocline water storage tank[J].Electric Power Technology and Environmental Protection,2024,40(6):635-645. | |
3 | 左超文,王樊云,陈洁 .考虑需求响应的光热电站热电联供型微网分层优化调度[J].分布式能源,2024,9(2):63-73. |
ZUO C W, WANG F Y, CHEN J .Hierarchical optimization scheduling of combined heat and power microgrid for photothermal power station considering demand response[J].Distributed Energy,2024,9(2):63-73. | |
4 | 来振亚,侯成龙,陈嘉映,等 .颗粒堆积床显热储能技术概述[J].分布式能源,2024,9(3):12-20. |
LAI Z Y, HOU C L, CHEN J Y,et al .Overview of sensible heat energy storage technology for particle packed bed[J].Distributed Energy,2024,9(3):12-20. | |
5 | 王泽众,黄平瑞,魏高升,等 .太阳能热发电固-气两相化学储热技术研究进展[J].发电技术,2021,42(2):238-246. |
WANG Z Z, HUANG P R, WEI G S,et al .Research progress of solid-gas two-phase chemical heat storage technology for solar thermal power generation[J].Power Generation Technology,2021,42(2):238-246. | |
6 | 顾正萌,蒋世希,吴家荣,等 .CaO/Ca(OH)2体系热化学储能应用关键问题的讨论[J].电力科技与环保,2023,39(4):285-291. doi:10.1023/a:1023840102689 |
GU Z M, JIANG S X, WU J R,et al .A discussion of key issues for the application of CaO/Ca(OH)2 system thermochemical energy storage[J].Electric Power Technology and Environmental Protection,2023,. 39(4):285-291.doi:10.1023/a:1023840102689 | |
7 | 高剑晨,赵炳晨,何峰,等 .六水硝酸镁相变储热复合材料改性制备及储/放热性能研究[J].化工学报,2021,72(6):3328-3337. |
GAO J C, ZHAO B C, HE F,et al .Preparation and investigation of the thermal charging and discharging of modified magnesium nitrate hexahydrate composite phase change material[J].CIESC Journal,2021,72(6):3328-3337. | |
8 | 郭学伯,范良迟,许浈婧,等 .助力节能降碳的相变储热材料研究和应用进展[J].发电技术,2023,. doi:10.12096/j.2096-4528.pgt.22001 |
44(2):201-212. GUO X B, FAN L C, XU Z J,et al .Research and application progress of phase change thermal energy storage materials for energy saving and carbon reduction[J].Power Generation Technology,2023,44(2):201-212. doi:10.12096/j.2096-4528.pgt.22001 | |
9 | CONG L, ZOU B, PALACIOS A,et al .Thickening and gelling agents for formulation of thermal energy storage materials:a critical review[J].Renewable and Sustainable Energy Reviews,2022,155:111906. doi:10.1016/j.rser.2021.111906 |
10 | 徐阳,唐桢馥,张晓晶,等 .锂离子电池不同冷却方式及浸没式冷却液综合对比分析[J].广东电力,2024,37(9):45-55. |
XU Y, TANG Z F, ZHANG X J,et al .Comprehensive comparison of different cooling methods and immersion cooling liquids for lithium-ion batteries[J].Guangdong Electric Power,2024,37(9):45-55. | |
11 | 张静姝,刘倩,姚晓乐,等 .应用于锂离子电池无源热管理与安全防护的水合盐复合相变材料[J].发电技术:1-12.. doi:10.1016/j.enss.2024.08.003 |
ZHANG J S, LIU Q, YAO X L,et al .Hydrated salt composite phase change materials for passive thermal management and safety protection of lithium-ion batteries[J].Power Generation Technology:1-12.. doi:10.1016/j.enss.2024.08.003 | |
12 | MAN X, LU H, XU Q,et al .Review on the thermal property enhancement of inorganic salt hydrate phase change materials[J].Journal of Energy Storage,2023,72:108699. doi:10.1016/j.est.2023.108699 |
13 | ZOU T, FU W, LIANG X,et al .Preparation and performance of modified calcium chloride hexahydrate composite phase change material for air-conditioning cold storage[J].International Journal of Refrigeration,2018,95:175-181. doi:10.1016/j.ijrefrig.2018.08.001 |
14 | LIU Y, LIU W, ZHANG S,et al .Preparation and characterization of new nano-particle mixed as thermal storage material[J].Applied Thermal Engineering,2019,163:114386. doi:10.1016/j.applthermaleng.2019.114386 |
15 | FU W, ZOU T, LIANG X,et al .Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage[J].Solar Energy Materials and Solar Cells,2019,193:149-156. doi:10.1016/j.solmat.2019.01.007 |
16 | 吴丽梅,刘庆欣,王晓龙,等 .相变储能材料研究进展[J].材料导报,2021,35(S1):501-506. |
WU L M, LIU Q X, WANG X L,et al .Research progress of phase change energy storage materials[J].Materials Reports,2021,35(S1):501-506. | |
17 | LIU Y, ZHENG R, LI J .High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries:critical review[J].Renewable and Sustainable Energy Reviews,2022,168:112783. doi:10.1016/j.rser.2022.112783 |
18 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J,et al .Recent developments in phase change materials for energy storage applications:a review[J].International Journal of Heat and Mass Transfer,2019,129:491-523. doi:10.1016/j.ijheatmasstransfer.2018.09.126 |
19 | YU K, LIU Y, YANG Y .Review on form-stable inorganic hydrated salt phase change materials:preparation,characterization and effect on the thermophysical properties[J].Applied Energy,2021,292:116845. doi:10.1016/j.apenergy.2021.116845 |
20 | 王成君,段志英,王爱军,等 .基于共晶系相变材料的研究进展[J].材料导报,2021,35(13):13058-13066. |
WANG C J, DUAN Z Y, WANG A J,et al .Research progress of eutectic phase change materials[J].Materials Reports,2021,35(13):13058-13066. | |
21 | WU M Q, WU S, CAI Y F,et al .Form-stable phase change composites:preparation,performance,and applications for thermal energy conversion,storage and management[J].Energy Storage Materials,2021,42:380-417. doi:10.1016/j.ensm.2021.07.019 |
22 | 陶文,张毅,孔祥法,等 .无机水合盐相变材料过冷度抑制方法的研究进展[J].过程工程学报,2020,20(6):619-627. |
TAO W, ZHANG Y, KONG X F,et al .Research progress on supercooling degree suppression of inorganic hydrated salt phase change materials[J].The Chinese Journal of Process Engineering,2020,20(6):619-627. | |
23 | 吴东灵,李廷贤,何峰,等 .三水醋酸钠相变储能复合材料改性制备及储/放热特性[J].化工学报,2018,69(7):2860-2868. |
WU D L, LI T X, HE F,et al .Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage[J].CIESC Journal,2018,69(7):2860-2868. | |
24 | ZHANG N, YUAN Y, CAO X,et al .Latent heat thermal energy storage systems with solid-liquid phase change materials:a review[J].Advanced Engineering Materials,2018,20(6):1700753. doi:10.1002/adem.201700753 |
25 | MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I,et al .A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J].Renewable and Sustainable Energy Reviews,2017,70:1072-1089. doi:10.1016/j.rser.2016.12.012 |
26 | YANG Z, YANG Z, LI J,et al .Design of diatomite-based hydrated salt composites with low supercooling degree and enhanced heat transfer for thermal energy storage[J].International Journal of Energy Research,2019,43(13):7058-7074. doi:10.1002/er.4725 |
27 | 马颖,刘益才,朱晓涵,等 .环境温度对无机水合盐相变材料过冷行为的影响机理[J].中南大学学报(自然科学版),2017,48(7):1930-1935. |
MA Y, LIU Y C, ZHU X H,et al .Influence mechanism of ambient temperature on inorganic salt hydrate PCM subcooling behavior[J].Journal of Central South University (Science and Technology),2017,48(7):1930-1935. | |
28 | MUNYALO J M, ZHANG X, XU X .Experimental investigation on supercooling,thermal conductivity and stability of nanofluid based composite phase change material[J].Journal of Energy Storage,2018,17:47-55. doi:10.1016/j.est.2018.02.006 |
29 | 李秋玫,季旭,兰青,等 .无机水合盐相变储热材料的过冷及导热性能研究进展[J].云南师范大学学报(自然科学版),2021,41(1):19-24. |
LI Q M, JI X, LAN Q,et al .Research progress on supercooling and thermal conductivity of inorganic hydrated salt phase change heat storage materials[J].Journal of Yunnan Normal University (Natural Sciences Edition),2021,41(1):19-24. | |
30 | 华维三,章学来,韩兴超,等 .改性三水合乙酸钠的制备及成核稳定性分析[J].太阳能学报,2020,41(10):215-222. |
HUA W S, ZHANG X L, HAN X C,et al .Preparation and nucleation stability analysis of modified sodium acetate trihydrate[J].Acta Energiae Solaris Sinica,2020,41(10):215-222. | |
31 | 何媚质,杨鲁伟,张振涛 .无机相变材料CaCl2⋅6H2O的过冷特性[J].化工学报,2017,68(11):4016-4024. |
HE M Z, YANG L W, ZHANG Z T .Supercooling characteristics of inorganic phase change material CaCl2⋅6H2O[J].CIESC Journal,2017,68(11):4016-4024. | |
32 | ZHANG Y, ZHANG X .Thermal properties of a new type of calcium chloride hexahydrate-magnesium chloride hexahydrate/expanded graphite composite phase change material and its application in photovoltaic heat dissipation[J].Solar Energy,2020,204:683-695. doi:10.1016/j.solener.2020.05.037 |
33 | 曾最,罗凯,叶伟梁,等 .十二水磷酸氢二钠相变储能材料研究进展[J].化工进展,2022,41(2):827-836. doi:10.16085/j.issn.1000-6613.2021-0607 |
ZENG Z, LUO K, YE W L,et al .Research progress of disodium hydrogen phosphate dodecahydrate phase change material[J].Chemical Industry and Engineering Progress,2022,41(2):827-836. doi:10.16085/j.issn.1000-6613.2021-0607 | |
34 | LI X, ZHOU Y, NIAN H,et al .Advanced nanocomposite phase change material based on calcium chloride hexahydrate with aluminum oxide nanoparticles for thermal energy storage[J].Energy & Fuels,2017,31(6):6560-6567. doi:10.1021/acs.energyfuels.7b00851 |
35 | LIU Y, YANG Y .Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material[J].Solar Energy Materials and Solar Cells,2017,160:18-25. doi:10.1016/j.solmat.2016.09.050 |
36 | FASHANDI M, LEUNG S N .Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage[J].Solar Energy Materials and Solar Cells,2018,178:259-265. doi:10.1016/j.solmat.2018.01.037 |
37 | ZAHIR M H, MOHAMED S A, SAIDUR R,et al .Supercooling of phase-change materials and the techniques used to mitigate the phenomenon[J].Applied Energy,2019,240:793-817. doi:10.1016/j.apenergy.2019.02.045 |
38 | ZHANG Y, ZHANG X, XU X,et al .Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials[J].Journal of Molecular Liquids,2019,280:360-366. doi:10.1016/j.molliq.2019.01.127 |
39 | 陈跃,纪珺,徐笑锋,等 .十二水磷酸氢二钠纳米复合相变材料的过冷特性[J].化工进展,2018,37(7):2734-2739. |
CHEN Y, JI J, XU X F,et al .Supercooling characteristics of disodium hydrogen phosphate nano-composites phase change materials[J].Chemical Industry and Engineering Progress,2018,37(7):2734-2739. | |
40 | BAO X, YANG H, XU X,et al .Development of a stable inorganic phase change material for thermal energy storage in buildings[J].Solar Energy Materials and Solar Cells,2020,208:110420. doi:10.1016/j.solmat.2020.110420 |
41 | 郑涛杰,陈志莉,刘强,等 .水合盐相变储能材料的增稠剂优选研究[J].太阳能学报,2018,39(7):1781-1787. |
ZHENG T J, CHEN Z L, LIU Q,et al .Study on optimum agent of thickener for salt hydrate phase change energy storage material[J].Acta Energiae Solaris Sinica,2018,39(7):1781-1787. | |
42 | 李昭,文卜,陈豪志,等 .高温熔融盐基纳米流体的研究现状及进展[J].中国电机工程学报,2021,41(6):2168-2187. |
LI Z, WEN B, CHEN H Z,et al .State-of-the-art review on high temperature molten salt based nanofluids[J].Proceedings of the CSEE,2021,41(6):2168-2187. | |
43 | KALIDASAN B, PANDEY A K, SAIDUR R,et al .Nano additive enhanced salt hydrate phase change materials for thermal energy storage[J].International Materials Reviews,2023,68(2):140-183. doi:10.1080/09506608.2022.2053774 |
44 | LIN X, ZHANG X, JI J,et al .Development of flexible form-stable phase change material with enhanced electrical resistance for thermal management[J].Journal of Cleaner Production,2021,311:127517. doi:10.1016/j.jclepro.2021.127517 |
45 | HUANG Q, DENG J, LI X,et al .Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management[J].Journal of Energy Storage,2020,32:101755. doi:10.1016/j.est.2020.101755 |
46 | 汪翔,章学来,华维三,等 .Na2HPO4⋅12H2O相变储能复合材料制备及热物性[J].化工进展,2019,38(12):5457-5464. |
WANG X, ZHANG X L, HUA W S,et al .Preparation and thermal properties of Na2HPO4⋅12H2O composite phase change material for thermal energy storage[J].Chemical Industry and Engineering Progress,2019,38(12):5457-5464. | |
47 | WU F, LIN Z, XU T,et al .Development and thermal properties of a novel sodium acetate trihydrate-Acetamide-micron/nano aluminum nitride composite phase change material[J].Materials & Design,2020,196:109113. doi:10.1016/j.matdes.2020.109113 |
48 | ZHAO B C, WANG R Z .Perspectives for short-term thermal energy storage using salt hydrates for building heating[J].Energy,2019,189:116139. doi:10.1016/j.energy.2019.116139 |
49 | XIAO Q, ZHANG M, FAN J,et al .Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material[J].Solar Energy Materials and Solar Cells,2019,199:91-98. doi:10.1016/j.solmat.2019.04.020 |
50 | 王佩祥,冯秀娟,朱易春,等 .利用膨胀石墨改进十二水磷酸氢二钠复合相变材料的蓄热性能[J].材料导报,2020,34(18):18044-18048. |
WANG P X, FENG X J, ZHU Y C,et al .Improvement of heat storage performance of disodium hydrogen phosphate dodecahydrate composite phase change materials with expanded graphite[J].Materials Reports,2020,34(18):18044-18048. | |
51 | MAO J, HOU P, LIU R,et al .Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material[J].Applied Thermal Engineering,2017,119:585-592. doi:10.1016/j.applthermaleng.2017.03.097 |
52 | ZOU T, LIANG X, WANG S,et al .Effect of expanded graphite size on performances of modified CaCl2⋅6H2O phase change material for cold energy storage[J].Microporous and Mesoporous Materials,2020,305:110403. doi:10.1016/j.micromeso.2020.110403 |
53 | WU S, YAN T, KUAI Z,et al .Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage[J].Solar Energy,2020,205:474-486. doi:10.1016/j.solener.2020.05.052 |
54 | HOU P, MAO J, LIU R,et al .Improvement in thermodynamic characteristics of sodium acetate trihydrate composite phase change material with expanded graphite[J].Journal of Thermal Analysis and Calorimetry,2019,137(4):1295-1306. doi:10.1007/s10973-019-08061-7 |
55 | MILIÁN Y E, GUTIÉRREZ A, GRÁGEDA M,et al .A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties[J].Renewable and Sustainable Energy Reviews,2017,73:983-999. doi:10.1016/j.rser.2017.01.159 |
56 | WU S, YAN T, KUAI Z,et al .Thermal conductivity enhancement on phase change materials for thermal energy storage:a review[J].Energy Storage Materials,2020,25:251-295. doi:10.1016/j.ensm.2019.10.010 |
57 | 杨晋,殷勇高,陈万河,等 .硫酸钠水合盐相变蓄冷材料的制备及性能优化[J].化工进展,2022,41(11):5977-5985. |
YANG J, YIN Y G, CHEN W H,et al .Preparation and performance optimization of phase change cold storage materials with sodium sulfate hydrate salt[J].Chemical Industry and Engineering Progress,2022,41(11):5977-5985. | |
58 | FANG Y, DING Y, TANG Y,et al .Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating[J].Applied Thermal Engineering,2019,150:1177-1185. doi:10.1016/j.applthermaleng.2019.01.069 |
59 | LIU Y, YANG Y .Form-stable phase change material based on Na2CO3⋅10H2O-Na2HPO4⋅12H2O eutectic hydrated salt/expanded graphite oxide composite:the influence of chemical structures of expanded graphite oxide[J].Renewable Energy,2018,115:734-740. doi:10.1016/j.renene.2017.08.097 |
60 | LI M, SHI J .Review on micropore grade inorganic porous medium based form stable composite phase change materials:preparation,performance improvement and effects on the properties of cement mortar[J].Construction and Building Materials,2019,194:287-310. doi:10.1016/j.conbuildmat.2018.10.222 |
61 | RAO Z, XU T, LIU C,et al .Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization[J].Solar Energy Materials and Solar Cells,2018,188:6-17. doi:10.1016/j.solmat.2018.08.012 |
62 | XIE N, LUO J, LI Z,et al .Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage[J].Solar Energy Materials and Solar Cells,2019,189:33-42. doi:10.1016/j.solmat.2018.09.016 |
63 | LIU J, ZHU C, LIANG W,et al .Experimental investigation on micro-scale phase change material based on sodium acetate trihydrate for thermal storage[J].Solar Energy,2019,193:413-421. doi:10.1016/j.solener.2019.09.050 |
64 | CUI W, ZHANG H, XIA Y,et al .Preparation and thermophysical properties of a novel form-stable CaCl2⋅6H2O/sepiolite composite phase change material for latent heat storage[J].Journal of Thermal Analysis and Calorimetry,2018,131(1):57-63. doi:10.1007/s10973-017-6170-2 |
65 | LI T X, WU D L, HE F,et al .Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J].International Journal of Heat and Mass Transfer,2017,115:148-157. doi:10.1016/j.ijheatmasstransfer.2017.07.056 |
66 | ZHAO L, XING Y, LIU X,et al .Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage[J].Applied Thermal Engineering,2018,143:172-181. doi:10.1016/j.applthermaleng.2018.07.094 |
67 | LING Z, LIU J, WANG Q,et al .MgCl2⋅6H2O- Mg(NO3)2⋅6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity[J].Solar Energy Materials and Solar Cells,2017,172:195-201. doi:10.1016/j.solmat.2017.07.019 |
68 | FANG Y, SU J, TANG Y,et al .Form-stable Na2SO4⋅10H2O-Na2HPO4⋅12H2O eutectic/hydrophilic fumed silica composite phase change material with low supercooling and low thermal conductivity for indoor thermal comfort improvement[J].International Journal of Energy Research,2020,44(4):3171-3182. doi:10.1002/er.5178 |
69 | PENG S, HUANG J, WANG T,et al .Effect of fumed silica additive on supercooling,thermal reliability and thermal stability of Na2HPO4⋅12H2O as inorganic PCM[J].Thermochimica Acta,2019,675:1-8. doi:10.1016/j.tca.2019.02.013 |
70 | FU W, ZOU T, LIANG X,et al .Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate-urea/fumed silica for radiant floor heating system[J].Applied Thermal Engineering,2019,162:114253. doi:10.1016/j.applthermaleng.2019.114253 |
71 | HAN W, GE C, ZHANG R,et al .Boron nitride foam as a polymer alternative in packaging phase change materials:synthesis,thermal properties and shape stability[J].Applied Energy,2019,238:942-951. doi:10.1016/j.apenergy.2019.01.153 |
72 | 李昭,李宝让,陈豪志,等 .相变储热技术研究进展[J].化工进展,2020,39(12):5066-5085. |
LI Z, LI B R, CHEN H Z,et al .State of the art review on phase change thermal energy storage technology[J].Chemical Industry and Engineering Progress,2020,39(12):5066-5085. | |
73 | WANG Y, GE S, HUANG B,et al .A simple route to PVC encapsulated Na2SO4⋅10H2O nano/micro-composite with excellent energy storage performance[J].Materials Chemistry and Physics,2019,223:723-726. doi:10.1016/j.matchemphys.2018.11.075 |
74 | LIU Z, CHEN Z, YU F .Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage[J].Solar Energy Materials and Solar Cells,2019,200:110004. doi:10.1016/j.solmat.2019.110004 |
75 | ZHANG W, ZHANG Y, LING Z,et al .Microinfiltration of Mg(NO3)2⋅6H2O into g-C3N4 and macroencapsulation with commercial sealants:a two-step method to enhance the thermal stability of inorganic composite phase change materials[J].Applied Energy,2019,253:113540. doi:10.1016/j.apenergy.2019.113540 |
76 | CHEN W, LIANG X, WANG S,et al .Polyurethane macro-encapsulation for CH3COONa⋅3H2O-Na2S2O3⋅5H2O/Melamine sponge to fabricate form-stable composite phase change material[J].Chemical Engineering Journal,2021,410:128308. doi:10.1016/j.cej.2020.128308 |
77 | 张志行,韩雪冰,冯旭宁,等 .面向不同电流工况的锂离子电池改进EECM研究[J].电力工程技术,2023,42(4):2-12. |
ZHANG Z H, HAN X B, FENG X N,et al .Improved EECM for lithium-ion batteries under different current conditions[J].Electric Power Engineering Technology,2023,42(4):2-12. | |
78 | 陈来恩,曾小勇,曾子豪,等 .基于物理信息与深度神经网络的锂离子电池温度预测[J].中国电力,2024,57(11):18-25. |
CHEN L E, ZENG X Y, ZENG Z H,et al .Temperature prediction of lithium-ion batteries based on physical information and deep neural network[J].Electric Power,2024,57(11):18-25. | |
79 | 王泽旭,李冰辰,许瑶,等 .基于过冷相变材料热开关的锂离子电池热管理系统[J].发电技术,2022,. doi:10.12096/j.2096-4528.pgt.21058 |
43(2):328-340. WANG Z X, LI B C, XU Y,et al .Lithium-ion battery thermal management system based on the combination of supercooled phase change material and thermal switch[J].Power Generation Technology,2022,43(2):328-340. doi:10.12096/j.2096-4528.pgt.21058 | |
80 | 刘倩,石千磊,李凯璇,等 .锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究[J].发电技术,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 |
LIU Q, SHI Q L, LI K X,et al .Research on immersion cooling thermal management of lithium ion battery combined with checkerboard topology diversion structure[J].Power Generation Technology,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 | |
81 | 王泽旭,贺可寒,孙晨,等 .采用相变热开关的软包电池热管理研究[J].发电技术,2022,43(5):810-822. |
WANG Z X, HE K H, SUN C,et al .Research on battery thermal management of pouch cell using a phase change material-based thermal switch[J].Power Generation Technology,2022,43(5):810-822. | |
82 | 熊慧敏,彭跃中,何励学,等 .热管耦合相变材料全气候锂离子电池热管理系统性能分析[J].中国电力,2024,57(6):27-36. |
XIONG H M, PENG Y Z, HE L X,et al .Thermal performance analysis of novel all-climate lithium-ion battery thermal management system coupled with heat pipes and phase change materials[J].Electric Power,2024,57(6):27-36. | |
83 | LV Y, YANG X, ZHANG G .Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles[J].Applied Thermal Engineering,2020,179:115747. doi:10.1016/j.applthermaleng.2020.115747 |
84 | JILTE R, AFZAL A, PANCHAL S .A novel battery thermal management system using nano-enhanced phase change materials[J].Energy,2021,219:119564. doi:10.1016/j.energy.2020.119564 |
85 | GALAZUTDINOVA Y, USHAK S, FARID M,et al .Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries:application[J].Journal of Power Sources,2021,491:229624. doi:10.1016/j.jpowsour.2021.229624 |
86 | LING Z, LI S, CAI C,et al .Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J].Applied Thermal Engineering,2021,193:117002. doi:10.1016/j.applthermaleng.2021.117002 |
87 | HEYHAT M M, MOUSAVI S, SIAVASHI M .Battery thermal management with thermal energy storage composites of PCM,metal foam,fin and nanoparticle[J].Journal of Energy Storage,2020,28:101235. doi:10.1016/j.est.2020.101235 |
88 | JIANG K, LIAO G, JIAQIANG E,et al .Thermal management technology of power lithium-ion batteries based on the phase transition of materials:a review[J].Journal of Energy Storage,2020,32:101816. doi:10.1016/j.est.2020.101816 |
89 | ZHI M, FAN R, ZHENG L,et al .Experimental investigation on hydrated salt phase change material for lithium-ion battery thermal management and thermal runaway mitigation[J].Energy,2024,307:132685. doi:10.1016/j.energy.2024.132685 |
90 | ZHOU S, ZHANG W, LIN S,et al .Enhancing lithium-ion battery pack safety:mitigating thermal runaway with high-energy storage inorganic hydrated salt/expanded graphite composite[J].Journal of Energy Storage,2024,92:112089. doi:10.1016/j.est.2024.112089 |
91 | WENG J, OUYANG D, YANG X,et al .Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J].Energy Conversion and Management,2019,200:112071. doi:10.1016/j.enconman.2019.112071 |
92 | ZHANG J, LI X, ZHANG G,et al .Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system[J].Journal of Power Sources,2020,480:229116. doi:10.1016/j.jpowsour.2020.229116 |
93 | 杨梦洁,杨爱军,叶奕君,等 .基于气体分析的锂离子电池热失控早期预警研究进展[J].电工技术学报,2023,38(17):4507-4538. |
YANG M J, YANG A J, YE Y J,et al .Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J].Transactions of China Electrotechnical Society,2023,38(17):4507-4538. | |
94 | 李威,陈威,王丹丹 .基于水合盐热化学储能的技术研究与进展[J].制冷与空调,2017,17(8):14-21. |
LI W, CHEN W, WANG D D .Research and development of thermochemical energy storage based on hydrated salt[J].Refrigeration and Air-Conditioning,2017,17(8):14-21. | |
95 | CAO J, LING Z, LIN S,et al .Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite[J].Chemical Engineering Journal,2022,433:133536. doi:10.1016/j.cej.2021.133536 |
[1] | 郭学伯, 范良迟, 许浈婧, 李有, 林俊, 陈林. 助力节能降碳的相变储热材料研究和应用进展[J]. 发电技术, 2023, 44(2): 201-212. |
[2] | Mohamed ABD-HAMID, 夏龙禹, 魏高升, 崔柳, 徐超, 杜小泽. 集成相变储热材料的光伏/热复合系统性能分析[J]. 发电技术, 2023, 44(1): 53-62. |
[3] | 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17. |
[4] | 王泽旭, 贺可寒, 孙晨, 李凯璇, 巨星. 采用相变热开关的软包电池热管理研究[J]. 发电技术, 2022, 43(5): 810-822. |
[5] | 闫帅帅, 陆洋, 侯文会, 刘凯. 面向锂电储能系统的本质安全电池智能隔膜材料[J]. 发电技术, 2022, 43(5): 792-800. |
[6] | 王宁, 陈志强, 刘明义, 张鹏, 曹曦, 陆泽宇, 雷浩东, 曹传钊, 严晓, 周国鹏. 基于模糊综合评价的锂离子电池健康状态评估[J]. 发电技术, 2022, 43(5): 784-791. |
[7] | 魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中. 电池型电容器技术发展趋势展望[J]. 发电技术, 2022, 43(5): 748-759. |
[8] | 陈晓光, 杨秀媛, 王镇林, 王浩扬. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718-730. |
[9] | 肖瑶, 钮文泽, 魏高升, 崔柳, 杜小泽. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术, 2022, 43(3): 392-404. |
[10] | 王泽旭, 李冰辰, 许瑶, 刘倩, 李凯璇, 巨星. 基于过冷相变材料热开关的锂离子电池热管理系统[J]. 发电技术, 2022, 43(2): 328-340. |
[11] | 蔡肖, 徐阳, 杨超, 郑章靖. 一种相变储热器内翅片结构的快速优化算法[J]. 发电技术, 2022, 43(1): 92-101. |
[12] | 廖志荣, 李朋达, 田紫芊, 徐超, 魏高升. 非均匀翅片对级联相变储热系统热性能强化的研究[J]. 发电技术, 2022, 43(1): 83-91. |
[13] | 李沂洹, 李慷, 余渐. 锂离子电池荷电状态与健康状态估计方法[J]. 发电技术, 2021, 42(5): 537-546. |
[14] | 刘倩, 石千磊, 李凯璇, 徐超, 廖志荣, 巨星. 锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究[J]. 发电技术, 2021, 42(2): 218-229. |
[15] | 魏高升,王遥,杨彦平,徐超,杜小泽. 基于孔尺度的泡沫金属强化相变储热材料传热性能数值模拟[J]. 发电技术, 2018, 39(2): 158-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||