发电技术 ›› 2022, Vol. 43 ›› Issue (2): 328-340.DOI: 10.12096/j.2096-4528.pgt.21058
王泽旭, 李冰辰, 许瑶, 刘倩, 李凯璇, 巨星
收稿日期:
2021-05-17
出版日期:
2022-04-30
发布日期:
2022-05-13
作者简介:
基金资助:
Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU
Received:
2021-05-17
Published:
2022-04-30
Online:
2022-05-13
Supported by:
摘要:
针对动力电池热管理的问题,提出一种耦合过冷相变材料六水合氯化钙和热开关的新型温控热开关装置。以18650圆柱型锂离子电池为对象,应用热开关装置并基于数值方法对其冷却和保温效果展开研究。装置基于过冷相变材料的体积变化特性提供机械热开关动作能力,与相变材料过冷现象结合进一步提高温控能力。分析结果表明,与无热开关的温控方式相比,过冷相变热开关温控使电池在5C高倍率放电结束时的最终温度下降了1.61 ℃,在外界环境温度-20 ℃时,过冷性相变热开关温控使电池温度管理时间延长了660 s。
中图分类号:
王泽旭, 李冰辰, 许瑶, 刘倩, 李凯璇, 巨星. 基于过冷相变材料热开关的锂离子电池热管理系统[J]. 发电技术, 2022, 43(2): 328-340.
Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch[J]. Power Generation Technology, 2022, 43(2): 328-340.
名称 | 符号 | 数值 |
---|---|---|
模型高度/mm | XH | 65 |
相变材料底面积/ | 102.71 | |
电池半径/mm | 9 | |
移动铜板厚度/mm | 1 | |
空气层厚度/mm | 1.05 | |
冷板厚度/mm | 5 | |
冷板两侧电池间距/mm | 30 | |
冷板同侧电池间距/mm | 29.3 |
表1 模型几何参数
Tab. 1 Geometric parameters of model
名称 | 符号 | 数值 |
---|---|---|
模型高度/mm | XH | 65 |
相变材料底面积/ | 102.71 | |
电池半径/mm | 9 | |
移动铜板厚度/mm | 1 | |
空气层厚度/mm | 1.05 | |
冷板厚度/mm | 5 | |
冷板两侧电池间距/mm | 30 | |
冷板同侧电池间距/mm | 29.3 |
材料 | 密度/ (kg/m3) | 导热系数/[W/(m·K)] | 比热/ [J/(kg·K)] | 潜热/ (kJ/kg) |
---|---|---|---|---|
18650电池 | 2 722 | 2.6(x方向) | 970 | — |
2.6(y方向) | ||||
28(z方向) | ||||
六水合 氯化钙 | 1 496(l) | 0.54(l) | 2 200(l) | 190.8 |
1 802(s) | 1.088(s) | 1 400(s) | ||
空气 | 1.205 | 0.025 9 | 1.005 | — |
铜 | 8 900 | 401 | 390 | — |
表2 各部分材料的物性参数
Tab. 2 Physical parameters of each part of the material
材料 | 密度/ (kg/m3) | 导热系数/[W/(m·K)] | 比热/ [J/(kg·K)] | 潜热/ (kJ/kg) |
---|---|---|---|---|
18650电池 | 2 722 | 2.6(x方向) | 970 | — |
2.6(y方向) | ||||
28(z方向) | ||||
六水合 氯化钙 | 1 496(l) | 0.54(l) | 2 200(l) | 190.8 |
1 802(s) | 1.088(s) | 1 400(s) | ||
空气 | 1.205 | 0.025 9 | 1.005 | — |
铜 | 8 900 | 401 | 390 | — |
1 | 宋永华,阳岳希,胡泽春.电动汽车电池的现状及发展趋势[J].电网技术,2011,35(4):1-7. doi:10.1097/MCC.0b013e328344b397 |
SONG Y H, YANG Y X, HU Z C. Current status and development trend of electric vehicle batteries[J]. Power Grid Technology,2011,35(4):1-7. doi:10.1097/MCC.0b013e328344b397 | |
2 | 闫金定.锂离子电池发展现状及其前景分析[J].航空学报,2014,35(10):2767-2775. doi:10.7527/S1000-6893.2014.0166 |
YAN J D. Analysis of the development status of lithium-ion batteries and their prospects[J].Journal of Aeronautics,2014,35(10):2767-2775. doi:10.7527/S1000-6893.2014.0166 | |
3 | 罗晔.韩国电化学储能系统研发进展[J].分布式能源,2020,5(3):29-33. doi:10.16513/j.2096-2185.DE.2004011 |
LUO Y. Progress in the development of electrochemical energy storage systems in Korea[J].Distributed Energy,2020,5(3):29-33. doi:10.16513/j.2096-2185.DE.2004011 | |
4 | 王鹏博,郑俊超.锂离子电池的发展现状及展望[J].自然杂志,2017,39(4):283-289. doi:10.3969/j.issn.0253-9608.2017.04.006 |
WANG P B, ZHENG J C. Current status and outlook of lithium-ion batteries[J].Nature Journal,2017,39(4):283-289. doi:10.3969/j.issn.0253-9608.2017.04.006 | |
5 | 华政,梁风,姚耀春.电动汽车电池的发展现状与趋势[J].化工进展,2017,36(8):2874-2881. doi:10.16085/j.issn.1000-6613.2017-0007 |
HUA Z, LIANG F, YAO Y C. Development status and trends of electric vehicle batteries[J].Chemical Progress,2017,36(8):2874-2881. doi:10.16085/j.issn.1000-6613.2017-0007 | |
6 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D].合肥:中国科学技术大学,2018. |
HUANG P F. Study on the fire hazard and thermal runaway critical conditions of lithium-ion batteries[D].Hefei:University of Science and Technology of China,2018. | |
7 | 吴凯,张耀,曾毓群,等.锂离子电池安全性能研究[J].化学进展,2011,23(Z1):401-409. |
WU K, ZHANG Y, ZENG Y Q, et al. Study on the safety performance of lithium-ion batteries[J].Advances in Chemistry,2011,23(Z1):401-409. | |
8 | WANG R S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011,15(9):4554-4571. doi:10.1016/j.rser.2011.07.096 |
9 | 梅简,张杰,刘双宇,等.电池储能技术发展现状[J].浙江电力,2020,39(3):75-81. |
MEI J, ZHANG J, LIU S Y, et al. Current status of battery energy storage technology development[J].Zhejiang Electric Power,2020,39(3):75-81. | |
10 | CHEN K, CHEN Y M, LI Z Y, et al. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J].International Journal of Heat and Mass Transfer, 2018, 127(PT.A):393-401. doi:10.1016/j.ijheatmasstransfer.2018.06.131 |
11 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J].Applied Energy, 2019, 242:378-392. doi:10.1016/j.apenergy.2019.03.043 |
12 | 刘倩,石千磊,李凯璇,等.锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究[J].发电技术,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 |
LIU Q, SHI Q L, LI K X, et al. Thermal management of submerged cooling in lithium-ion batteries combined with tessellated topological shunt structure[J].Power Generation Technology,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 | |
13 | LIU J, LI H, LI W, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J].Applied Thermal Engineering,2019,164:114421. doi:10.1016/j.applthermaleng.2019.114421 |
14 | 廖智伟. 液冷式18650动力锂电池组温度场分析及优化[D].重庆:重庆交通大学,2018. |
LIAO Z W. Analysis and optimization of temperature field of liquid-cooled 18650 power lithium battery pack[D].Chongqing:Chongqing Jiaotong University,2018. | |
15 | GRECO A, XI J, CAO D D. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J].Journal of Power Sources, 2015, 278:50-68. doi:10.1016/j.jpowsour.2014.12.027 |
16 | SUMAN B, HARIHARAN K S, KOLAKE S M, et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system-science direct[J].Applied Energy, 2016, 181:1-13. doi:10.1016/j.apenergy.2016.08.049 |
17 | 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D].广州:华南理工大学,2013. |
RAO Z H. Thermal management of power battery based on solid-liquid phase change heat transfer medium[D].Guangzhou:South China University of Technology, 2013. | |
18 | BAMDEZH M A, MOLAEIMANESH G R. Impact of system structure on the performance of a hybrid thermal management system for a Li-ion battery module[J].Journal of Power Sources, 2020, 457:227993. doi:10.1016/j.jpowsour.2020.227993 |
19 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J].Applied Thermal Engineering, 175:115331. |
20 | TAO W, TSENG K J, ZHAO J, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J].Applied Energy, 2014, 134:229-238. doi:10.1016/j.apenergy.2014.08.013 |
21 | 闵德平. 电池组结构设计及其热管理液流传热强化研究[D].吉林:吉林大学,2016. |
MIN D P. Research on the structural design of battery pack and its thermal management liquid flow heat transfer enhancement[D].Jilin: Jilin University,2016. | |
22 | 薛超坦. 基于液冷的纯电动汽车锂电池热管理研究[D].吉林:吉林大学,2017. |
XUE C T. Research on the thermal management of pure electric vehicle lithium battery based on liquid cooling [D].Jilin:Jilin University,2017. | |
23 | 吴博.电动汽车锂电池冷却方式综述[J].汽车文摘,2020(11):9-14. |
WU B. A review of cooling methods for electric vehicle lithium batteries[J].Automotive Digest, 2020(11):9-14. | |
24 | 白帆飞,宋文吉,陈明彪,等.锂离子电池组热管理系统研究现状[J].电池,2016,46(3):168-171. doi:10.3969/j.issn.1001-1579.2016.03.014 |
BAI F F, SONG W J, CHEN M B, et al. Current status of research on thermal management system of lithium-ion battery pack[J].Battery,2016,46(3):168-171. doi:10.3969/j.issn.1001-1579.2016.03.014 | |
25 | 李泽群,杨建国.石墨/石蜡相变材料在电池热管理中的应用[J].电源技术,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 |
LI Z Q, YANG J G. Application of graphite/paraffin phase change materials in battery thermal management[J].Power Technology,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 | |
26 | 杨成亮,贾力,任宏磊.基于相变材料的方形锂电池冷却实验研究[J].工程热物理学报,2020,41(10):2530-2538. |
YANG C L, JIA L, REN H L,et al. Experimental study on the cooling of square lithium batteries based on phase change materials[J].Journal of Engineering Thermophysics, 2020,41(10): 2530-2538. | |
27 | WEI L, JIA L, AN Z J,et al. Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates[J].Journal of Thermal Science, 2020, 29(4): 1001-1009. doi:10.1007/s11630-020-1331-1 |
28 | LEI S, SHI Y, CHEN G. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling[J].Applied Thermal Engineering, 2019, 168:114792. doi:10.1016/j.applthermaleng.2019.114792 |
29 | HAO M, LI J, PAEK S, et al. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy[J].Nature Energy, 2018, 3(10):899-906. doi:10.1038/s41560-018-0243-8 |
30 | 张国庆,饶中浩,吴忠杰,等.采用相变材料冷却的动力电池组的散热性能[J].化工进展,2009,28(1):23-26. doi:10.3321/j.issn:1000-6613.2009.01.005 |
ZHANG G Q, RAO Z H, WU Z J, et al. Heat dissipation performance of power battery pack using phase change material cooling[J].Chemical Progress,2009,28(1):23-26. doi:10.3321/j.issn:1000-6613.2009.01.005 | |
31 | 朱思贤,邹得球,鲍家明,等. 相变材料的过冷特性及调控研究进展[J].材料导报, 2020, 34(19):79-86. doi:10.11896/cldb.19080094 |
ZHU S X, ZOU D Q, BAO J M,et al. Research progress on the subcooling properties and regulation of phase change materials[J].Materials Guide, 2020, 34(19):79-86. doi:10.11896/cldb.19080094 | |
32 | BEAUPERE N, SOUPREMANIEN U, ZALEWSKI L .Nucleation triggering methods in supercooled phase change materials (PCM):a review[J].Thermochimica Acta,2018,670:184-201. doi:10.1016/j.tca.2018.10.009 |
33 | HU H, JIN X, ZHANG X. Effect of supercooling on the solidification process of the phase change material[J].Energy Procedia, 2017, 105:4321-4327. doi:10.1016/j.egypro.2017.03.905 |
34 | YUAN, K, ZHOU, Y, SUN W, FANG, et al. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J].Composites Science and Technology, 2018,156: 78-86. doi:10.1016/j.compscitech.2017.12.021 |
35 | 陈进. 低温固体界面传热过程计算机仿真研究[D].武汉:华中科技大学, 2004. |
CHEN J. Computer simulation of heat transfer processes at low temperature solid interfaces[D].Wuhan:Huazhong University of Science and Technology, 2004. | |
36 | SHI L, HU Y W, HE Y R. Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid[J].Nano Energy,2020,71: 104582. doi:10.1016/j.nanoen.2020.104582 |
37 | YUTA N, KEISUKE S, MAKIKO A. Research and development of mechanical heat switch for spacecraft[C]// The Japan Society of Mechanical Engineers. Proceedings of the Thermal Engineering Conference 2013. Japan:JSME,2013:119-120. |
38 | 刘显茜,邹涛,侯宏英,等.基于Fluent的锂离子电池及模组风冷温度场数值研究[J].软件导刊,2020,19(7):5-10. |
LIU X X, ZOU T, HOU H Y, et al. Numerical study of air-cooled temperature fields of lithium-ion batteries and modules based on Fluent[J].Software Guide,2020,19(7):5-10. | |
39 | CHEN J, KANG S, JIAQIANG E . et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review[J].Journal of Power Sources,2019, 442:227228. doi:10.1016/j.jpowsour.2019.227228 |
40 | BELÉN Z, JOSÉ M M, LUISA F C, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J].Applied Thermal Engineering, 2003,23(3):251-283. doi:10.1016/s1359-4311(02)00192-8 |
41 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J.A general energy balance for battery systems[J].Journal of the Electrochemical Society,1985,132(1):5-12. doi:10.1149/1.2113792 |
42 | PESARAN A A, BURCH S, KEYSER M. An approach for designing thermal management systems for electric and hybrid vehicle battery packs[R].Office of Scientific & Technical Information Technical Reports, 1999: 1-16. |
43 | 彭强. 电动汽车用锂离子动力电池热效应研究[D].吉林:吉林大学,2012. |
PENG Q. Study on thermal effects of lithium-ion power batteries for electric vehicles[D].Jilin: Jilin University, 2012. | |
44 | CHENG K W E, DIVAKAR B P, WU H,et al. Battery-management system (BMS) and SOC development for electrical vehicles[J].IEEE Transactions on Vehicular Technology,2011,60: 76-88. doi:10.1109/tvt.2010.2089647 |
[1] | 屠楠, 刘家琛, 徐静, 方嘉宾, 马彦花. 管壳式相变蓄热器的蓄释热过程性能分析[J]. 发电技术, 2024, 45(3): 508-516. |
[2] | 刘学, 李国栋, 张瑞颖, 侯一晨, 陈磊, 杨立军. 电站空冷岛轴流风机模型研究[J]. 发电技术, 2024, 45(3): 545-557. |
[3] | 龚思琦, 云再鹏, 许明, 敖乐, 李初福, 黄凯, 孙晨. 基于三元催化剂的固体氧化物燃料电池尾气催化燃烧数值模拟[J]. 发电技术, 2024, 45(2): 331-340. |
[4] | 杨旸, 李耀强, 张金琦. 基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J]. 发电技术, 2023, 44(5): 712-721. |
[5] | 杨旸, 郭德三, 李耀强, 张金琦. 燃气轮机贫预混多旋流组合燃烧室头部结构设计[J]. 发电技术, 2023, 44(2): 183-192. |
[6] | 刘文斌, 李璐璐, 李晓金, 姚宣, 杨海瑞. 脱硫湿烟气喷淋冷凝过程中的参数优化研究[J]. 发电技术, 2023, 44(1): 107-114. |
[7] | 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17. |
[8] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[9] | 张弘毅, 曲立涛. 9F级燃机选择性催化还原脱硝数值模拟研究与应用[J]. 发电技术, 2023, 44(1): 78-84. |
[10] | 魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中. 电池型电容器技术发展趋势展望[J]. 发电技术, 2022, 43(5): 748-759. |
[11] | 陈晓光, 杨秀媛, 王镇林, 王浩扬. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718-730. |
[12] | 王宁, 陈志强, 刘明义, 张鹏, 曹曦, 陆泽宇, 雷浩东, 曹传钊, 严晓, 周国鹏. 基于模糊综合评价的锂离子电池健康状态评估[J]. 发电技术, 2022, 43(5): 784-791. |
[13] | 闫帅帅, 陆洋, 侯文会, 刘凯. 面向锂电储能系统的本质安全电池智能隔膜材料[J]. 发电技术, 2022, 43(5): 792-800. |
[14] | 孔文俊, 张艳森, 汤效平, 张伟阔. 大容量储能锂电池电芯产热特性研究[J]. 发电技术, 2022, 43(5): 801-809. |
[15] | 王泽旭, 贺可寒, 孙晨, 李凯璇, 巨星. 采用相变热开关的软包电池热管理研究[J]. 发电技术, 2022, 43(5): 810-822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||