发电技术 ›› 2024, Vol. 45 ›› Issue (3): 373-381.DOI: 10.12096/j.2096-4528.pgt.22127
• 灵活性发电技术 • 下一篇
袁鑫, 刘骏, 陈衡, 潘佩媛, 徐钢, 王修彦
收稿日期:
2023-07-20
修回日期:
2023-10-11
出版日期:
2024-06-30
发布日期:
2024-07-01
通讯作者:
陈衡
作者简介:
基金资助:
Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG
Received:
2023-07-20
Revised:
2023-10-11
Published:
2024-06-30
Online:
2024-07-01
Contact:
Heng CHEN
Supported by:
摘要:
目的 分析碳捕集技术对燃煤电厂调峰能力的影响机制,量化碳捕集技术对燃煤电厂发电效率的影响。 方法 以国内某典型燃煤电厂为例,选取燃烧后碳捕集方案,通过EBSILON软件构建常规燃煤火电机组和碳捕集电厂的模拟模型,得出碳捕集电厂的运行区间,对比分析了碳捕集电厂与常规燃煤电厂的运行结果,对机组的调峰性能的变化展开了研究。 结果 与常规燃煤电厂相比,碳捕集电厂等效输出功率下降了1%~2%,净输出功率下降了20%~30%,全场净效率下降了8%~10%。 结论 碳捕集系统的加入会使电厂在效率降低的同时获得更大的下调峰深度和更快的调峰响应速度。
中图分类号:
袁鑫, 刘骏, 陈衡, 潘佩媛, 徐钢, 王修彦. 碳捕集技术应用对燃煤机组调峰能力的影响[J]. 发电技术, 2024, 45(3): 373-381.
Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units[J]. Power Generation Technology, 2024, 45(3): 373-381.
参数 | 数值 |
---|---|
主蒸汽额定流量/(kg/s) | 260.4 |
主蒸汽压力/MPa | 16.7 |
主蒸汽温度/℃ | 538 |
再热蒸汽流量/(kg/s) | 217.7 |
额定给水温度/℃ | 272 |
额定背压/kPa | 14.0 |
转速/(r/min) | 3 000 |
额定功率/MW | 300 |
净热耗/[kJ/(kW⋅h)] | 8 182.4 |
表1 案例机组基本参数
Tab. 1 Basic parameters of the reference unit
参数 | 数值 |
---|---|
主蒸汽额定流量/(kg/s) | 260.4 |
主蒸汽压力/MPa | 16.7 |
主蒸汽温度/℃ | 538 |
再热蒸汽流量/(kg/s) | 217.7 |
额定给水温度/℃ | 272 |
额定背压/kPa | 14.0 |
转速/(r/min) | 3 000 |
额定功率/MW | 300 |
净热耗/[kJ/(kW⋅h)] | 8 182.4 |
组分 | 数值 |
---|---|
N2质量分数/% | 0.639 1 |
O2质量分数/% | 0.032 6 |
Ar质量分数/% | 0.010 9 |
H2O质量分数/% | 0.105 0 |
CO2质量分数/% | 0.209 4 |
表2 进入脱碳装置的烟气成分
Tab. 2 Composition of flue gas entering the decarbonization plant
组分 | 数值 |
---|---|
N2质量分数/% | 0.639 1 |
O2质量分数/% | 0.032 6 |
Ar质量分数/% | 0.010 9 |
H2O质量分数/% | 0.105 0 |
CO2质量分数/% | 0.209 4 |
参数 | 数值 |
---|---|
捕集效率/% | 90 |
捕集能耗/MW | 50.46 |
水耗/(kg/s) | 48.68 |
表3 额定工况下碳捕集装置参数
Tab. 3 Parameters of carbon capture device under rated working conditions
参数 | 数值 |
---|---|
捕集效率/% | 90 |
捕集能耗/MW | 50.46 |
水耗/(kg/s) | 48.68 |
参数 | 工况 | 案例燃煤机组 | 碳捕集电厂 | 差值 |
---|---|---|---|---|
等效输出功率/MW | THA | 299.051 | 295.580 | 3.471 |
75%THA | 226.537 | 223.804 | 2.733 | |
50%THA | 155.030 | 152.817 | 2.213 | |
40%THA | 123.319 | 121.328 | 1.991 | |
30%THA | 93.899 | 92.398 | 1.501 | |
净输出功率/MW | THA | 299.051 | 228.470 | 70.581 |
75%THA | 226.537 | 174.734 | 51.803 | |
50%THA | 155.030 | 120.003 | 35.027 | |
40%THA | 123.319 | 94.639 | 28.680 | |
30%THA | 93.899 | 70.668 | 23.231 | |
全厂净效率/% | THA | 40.6 | 31.4 | 9.2 |
75%THA | 40.6 | 31.3 | 9.3 | |
50%THA | 39.7 | 30.7 | 9.0 | |
40%THA | 38.2 | 29.3 | 8.9 | |
30%THA | 37.1 | 27.9 | 9.2 |
表4 案例燃煤机组和碳捕集电厂的运行结果
Tab. 4 Operating results of reference units and carbon capture power plants
参数 | 工况 | 案例燃煤机组 | 碳捕集电厂 | 差值 |
---|---|---|---|---|
等效输出功率/MW | THA | 299.051 | 295.580 | 3.471 |
75%THA | 226.537 | 223.804 | 2.733 | |
50%THA | 155.030 | 152.817 | 2.213 | |
40%THA | 123.319 | 121.328 | 1.991 | |
30%THA | 93.899 | 92.398 | 1.501 | |
净输出功率/MW | THA | 299.051 | 228.470 | 70.581 |
75%THA | 226.537 | 174.734 | 51.803 | |
50%THA | 155.030 | 120.003 | 35.027 | |
40%THA | 123.319 | 94.639 | 28.680 | |
30%THA | 93.899 | 70.668 | 23.231 | |
全厂净效率/% | THA | 40.6 | 31.4 | 9.2 |
75%THA | 40.6 | 31.3 | 9.3 | |
50%THA | 39.7 | 30.7 | 9.0 | |
40%THA | 38.2 | 29.3 | 8.9 | |
30%THA | 37.1 | 27.9 | 9.2 |
1 | 冯伟忠,李励 .“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 |
FENG W Z, LI L.Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under “Double Carbon” targets[J].Power Generation Technology,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 | |
2 | 谢国辉,李娜娜,元博 .我国新能源开发路线图分析方法及模型[J].发电技术,2020,41(6):631-637. doi:10.12096/j.2096-4528.pgt.19174 |
XIE G H, LI N N, YUAN B .Analysis methods and model of new energy developing roadmap in China[J].Power Generation Technology,2020,41(6):631-637. doi:10.12096/j.2096-4528.pgt.19174 | |
3 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y Q, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
4 | 吴何来,李汪繁,丁先 .“双碳”目标下我国碳捕集、利用与封存政策分析及建议[J].电力建设,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 |
WU H L, LI W F, DING X .Policy analysis and suggestion for carbon capture,utilization and storage under double carbon target in China[J].Electric Power Construction,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 | |
5 | 魏世杰,樊静丽,杨扬,等 .燃煤电厂碳捕集、利用与封存技术和可再生能源储能技术的平准化度电成本比较[J].热力发电,2021,50(1):33-42. |
WEI S J, FAN J L, YANG Y,et al .Comparison of the calibration cost of carbon capture,utilization and storage technology in coal-fired power plants and renewable energy storage technology[J].Thermal Power Generation,2021,50(1):33-42. | |
6 | 尚勇,王喆,严欢,等 .“双碳”背景下陕西新型电力系统研究探索[J].电网与清洁能源,2023,39(12):20-27. |
SHANG Y, WANG Z, YAN H,et al .Research exploration of Shaanxi new type power system in the background of “Dual Carbon”[J].Advances of Power System & Hydroelectric Engineering,2023,39(12):20-27. | |
7 | FABER R, KOPCKE M, BIEDE O,et al .Open-loop step responses for the MEA post-combustion capture process:experimental results from the Esbjerg pilot plant[J].Energy Procedia,2011,4:1427-1434. doi:10.1016/j.egypro.2011.02.008 |
8 | 李雯乐 .能源互联网下新能源电力系统风险评估模型研究[D].北京:华北电力大学,2018. |
LI W L .Research on risk assessment model of new energy power system under energy Internet[D].Beijing:North China Electric Power University,2018. | |
9 | 康重庆,陈启鑫,夏清 .应用于电力系统的碳捕集技术及其带来的变革[J].电力系统自动化,2010,34(1):1-7. |
KANG C Q, CHEN Q X, XIA Q .Carbon capture technology applied to power system and its revolution [J].Automation of Electric Power Systems,2010,34(1):1-7. | |
10 | NANDHINI R, SIVAPRAKASH B, RAJAMOHAN N,et al .Carbon-free hydrogen and bioenergy production through integrated carbon capture and storage technology for achieving sustainable and circular economy:a review[J].Fuel,2023,342:126984. doi:10.1016/j.fuel.2022.126984 |
11 | YU F, CHU X, SUN D,et al .Low-carbon economic dispatch strategy for renewable integrated power system incorporating carbon capture and storage technology[J].Energy Reports,2022,8:251-258. doi:10.1016/j.egyr.2022.05.196 |
12 | BOHM M C, HERZOG H J, PARSONS J E,et al .Capture-ready coal plants-options,technologies and economics[J].International Journal of Greenhouse Gas Control,2007,1(1):113-120. doi:10.1016/s1750-5836(07)00033-3 |
13 | DAVISON J .Performance and costs of power plants with capture and storage of CO2 [J].Energy,2007,32(7):1163-1176. doi:10.1016/j.energy.2006.07.039 |
14 | SCHREIBER A, ZAPP P, MARKEWITZ P,et al .Environmental analysis of a German strategy for carbon capture and storage of coal power plants[J].Energy Policy,2010,38(12):7873-7883. doi:10.1016/j.enpol.2010.09.006 |
15 | FAN J, WEI S, YANG L,et al .Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies:Evidence from China[J].Energy,2019,176:143-155. doi:10.1016/j.energy.2019.04.003 |
16 | LIU S, LI H, ZHANG K,et al .Techno-economic analysis of using carbon capture and storage (CCS) in decarbonizing China’s coal-fired power plants[J].Journal of Cleaner Production,2022,351:131384. doi:10.1016/j.jclepro.2022.131384 |
17 | FAN J, XU M, LI F,et al .Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China:the technology lock-in and cost optimization perspective[J].Applied Energy,2018,229:326-334. doi:10.1016/j.apenergy.2018.07.117 |
18 | VAN DER WIJK P C, BROUWER A S, VAN DEN BROEK M,et al .Benefits of coal-fired power generation with flexible CCS in a future northwest European power system with large scale wind power[J].International Journal of Greenhouse Gas Control,2014,28:216-233. doi:10.1016/j.ijggc.2014.06.014 |
19 | 韩义,周琳绯,王研凯,等 .新型MEA法用于燃煤电厂调峰的系统构建及性能研究[J].中国电机工程学报,2021,41(11):3722-3729. doi:10.13334/j.0258-8013.pcsee.201515 |
HAN Y, ZHOU L F, W Y K,et al .A new MEA method for peak regulation system construction and performance research of coal-fired power plant[J].Proceedings of the CSEE,2021,41(11):3722-3729. doi:10.13334/j.0258-8013.pcsee.201515 | |
20 | 康重庆,季震,陈启鑫 .碳捕集电厂灵活运行方法评述与展望[J].电力系统自动化,2012,36(6):1-10. doi:10.7500/AEPS201202121 |
KANG C Q, JI Z, CHEN Q X .Review and prospect of flexible operation methods for carbon capture power plants[J].Automation of Electric Power Systems,2012,36(6):1-10. doi:10.7500/AEPS201202121 | |
21 | 周琳绯 .CCS技术耦合燃煤电站深度储能调峰的系统构建和性能研究[D].南京:东南大学,2019. |
ZHOU L F.System construction and performance research of deep energy storage peak regulation for coal-fired power station coupled with CCS technology[D].Nanjing:Southeast University,2019. | |
22 | BURDYNY T, STRUCHTRUP H .Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process[J].Energy,2010,35(5):1884-1897. doi:10.1016/j.energy.2009.12.033 |
23 | 孟磊,张力元,何镇翔 .燃煤电厂CO2捕集技术研究[J].上海节能,2023(12):1865-1869. |
MENG L, ZHANG L Y, HE Z X .Research on CO2 capture technology in coal-fired power plants[J].Shanghai Energy Saving,2023(12):1865-1869. | |
24 | 王立健,何青 .燃煤碳捕集机组技术经济性分析[J].热力发电,2018,47(8):1-7. |
WANG L J, HE Q .Technical and economic analysis of coal-fired carbon capture unit[J].Thermal Power Generation,2018,47(8):1-7. | |
25 | 罗金山,路畅,孟繁骏 .碳排放及燃煤约束下的电源规划及其效益评价[J].电力系统自动化,2016,40(11):47-52. doi:10.7500/AEPS20150714011 |
LUO J S, LU C, MENG F J .Power supply planning and its benefit evaluation under the constraints of carbon emission and coal burning[J].Automation of Electric Power Systems,2016,40(11):47-52. doi:10.7500/AEPS20150714011 | |
26 | 陈启鑫,康重庆,夏清 .碳捕集电厂的运行机制研究与调峰效益分析[J].中国电机工程学报,2010,30(7):22-28. |
CHEN Q X, KANG C Q, XIA Q .Research on operation mechanism and peak Rrgulation benefit of carbon capture power plant[J].Proceedings of the CSEE,2010,30(7):22-28. | |
27 | 张利君 .基于技术经济学的碳捕集系统与燃煤电厂耦合对比研究[J].现代化工,2017,37(10):189-192. |
ZHANG L J .Optimization of coupling carbon capture system with coal fired power plant based on technological economics[J].Modern Chemical Industry,2017,5(10):189-192. |
[1] | 丁湧. 1 000 MW超超临界燃煤锅炉深度调峰研究[J]. 发电技术, 2024, 45(3): 382-391. |
[2] | 陈晓峰, 左川, 赵宁, 黄凯, 王惠杰. 集成蓄热装置的火电机组调峰特性分析[J]. 发电技术, 2024, 45(3): 392-400. |
[3] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
[4] | 李军徽, 陈国航, 马腾, 李翠萍, 朱星旭, 贾晨. 高风电渗透率下液流电池储能系统调峰优化控制策略[J]. 发电技术, 2024, 45(3): 434-447. |
[5] | 张宏伟, 张永生, 汪涛, 王家伟. 电厂燃煤飞灰固化脱硫污泥重金属铅特性研究[J]. 发电技术, 2024, 45(3): 527-534. |
[6] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[7] | 郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢. 深度调峰背景下火电机组热电解耦技术路径对比分析[J]. 发电技术, 2024, 45(2): 207-215. |
[8] | 贾志军, 范伟, 任少君, 魏唐斌. 600 MW亚临界机组长时间深度调峰燃烧稳定性研究[J]. 发电技术, 2024, 45(2): 216-225. |
[9] | 李展, 杨振勇, 刘磊, 陈振山, 季卫鸣, 洪烽. 火电机组深度调峰工况下炉侧蓄热系数对一次调频能力的影响分析[J]. 发电技术, 2024, 45(2): 226-232. |
[10] | 杨正, 孙亦鹏, 温志强, 程亮, 李战国. 深度调峰工况下超临界机组的干湿态转换策略研究[J]. 发电技术, 2024, 45(2): 233-239. |
[11] | 赵振宇, 李炘薪. 基于阶梯碳交易的碳捕集电厂-电转气虚拟电厂低碳经济调度[J]. 发电技术, 2023, 44(6): 769-780. |
[12] | 郁海彬, 张煜晨, 刘扬洋, 陆增洁, 翁锦德. 碳交易机制下多主体虚拟电厂参与电力市场的优化调度竞标策略[J]. 发电技术, 2023, 44(5): 634-644. |
[13] | 汪丽, 张欢, 叶舣, 赵兴雷. N-氨乙基哌嗪与甘氨酸钠CO2吸收剂配方研究[J]. 发电技术, 2023, 44(5): 674-684. |
[14] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[15] | 董中豪, 卢啸风, 史丽超, 杨增增, 孔繁盛, 王鹏, 林国强, 赵鹏. 炉膛耐火材料热惯性对循环流化床锅炉调峰速率的影响[J]. 发电技术, 2023, 44(4): 514-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||