发电技术 ›› 2021, Vol. 42 ›› Issue (6): 751-764.DOI: 10.12096/j.2096-4528.pgt.21059
卢赓1(), 邓婧2,*(
), 王渝红3, 曹静1, 岳云峰1
收稿日期:
2021-05-19
出版日期:
2021-12-31
发布日期:
2021-12-23
通讯作者:
邓婧
作者简介:
卢赓(1980), 男, 高级工程师, 主要研究方向为电力系统规划、可再生能源规划, lugeng@gedi.com.cn
基金资助:
Geng LU1(), Jing DENG2,*(
), Yuhong WANG3, Jing CAO1, Yunfeng YUE1
Received:
2021-05-19
Published:
2021-12-31
Online:
2021-12-23
Contact:
Jing DENG
Supported by:
摘要:
气候变化对人类社会的影响越来越受关注,随之而来的一系列极端天气引发系统断电的风险也越来越显著。为应对气候变化尤其是极端天气,人类社会需采取减缓和适应2种应对策略,对于发展中国家与小岛国,由于气候变化已经发生,因此气候问题将首先是适应问题。为解决电力系统如何从各个环节完整地适应气候变化问题,建立了一个适应气候变化的电力系统发展体系,提出一种涵盖极端气象因素的电力系统发展路径构建方法。在总结各种极端天气对电力系统影响的基础上,对电网的脆弱性进行评价;研究了适应极端天气的总体策略,并提出电力系统适应极端天气事件的方案,即规划–建设–应急管理–评估(planning-construction-emergency management-assessment,PCEA)抗灾体系。在规划阶段重点进行保底电网规划,构建不停电最小电网主干网;基于方案不同阶段的应用实例,验证了PCEA体系可以促使电力系统更好地适应极端天气。
中图分类号:
卢赓, 邓婧, 王渝红, 曹静, 岳云峰. 电力系统受极端天气的影响分析及其适应策略[J]. 发电技术, 2021, 42(6): 751-764.
Geng LU, Jing DENG, Yuhong WANG, Jing CAO, Yunfeng YUE. Analysis of Power System Affected by Extreme Weather and Its Adaptive Strategy[J]. Power Generation Technology, 2021, 42(6): 751-764.
现抗台风能力 | 改造后抗台风级(风速) | |||
风级(风速) | 输电线路占比/% | 方案1 | 方案2(推荐方案) | |
13级下限(33.0~35.0 m/s) | 7.3 | 16级中限(47.7~50.0 m/s) | 15级上限(45.4~47.7 m/s) | |
13级中限(35.0~37.0 m/s) | 14.7 | |||
14级下限(37.0~39.1 m/s) | 72.0 | |||
14级中限(39.1~42.0 m/s) | 6.0 | |||
改造工程投资/新建工程投资 | 53.4% | 43.1% |
表1 某城市500 kV输电线路防风改造方案对比
Tab. 1 Comparison of wind protection retrofit schemes for 500 kV transmission lines in a city
现抗台风能力 | 改造后抗台风级(风速) | |||
风级(风速) | 输电线路占比/% | 方案1 | 方案2(推荐方案) | |
13级下限(33.0~35.0 m/s) | 7.3 | 16级中限(47.7~50.0 m/s) | 15级上限(45.4~47.7 m/s) | |
13级中限(35.0~37.0 m/s) | 14.7 | |||
14级下限(37.0~39.1 m/s) | 72.0 | |||
14级中限(39.1~42.0 m/s) | 6.0 | |||
改造工程投资/新建工程投资 | 53.4% | 43.1% |
现抗台风能力 | 改造后抗台风级(风速) | |||
风级(风速) | 输电线路占比/% | 方案1 | 方案2(推荐方案) | |
13级下限(33.0~35.0 m/s) | 4.5 | 15级上限(45.4~47.7 m/s) | 15级下限(41.3~43.3 m/s) | |
13级中限(35.0~37.0 m/s) | 38.7 | |||
14级下限(37.0~39.1 m/s) | 50.3 | |||
14级中限(39.1~42.0 m/s) | 6.5 | |||
改造工程投资/新建工程投资 | 44.1% | 34.1% |
表2 某城市110~220 kV输电线路防风改造方案对比
Tab. 2 Comparison of wind protection retrofit schemes for 110~220 kV transmission lines in a city
现抗台风能力 | 改造后抗台风级(风速) | |||
风级(风速) | 输电线路占比/% | 方案1 | 方案2(推荐方案) | |
13级下限(33.0~35.0 m/s) | 4.5 | 15级上限(45.4~47.7 m/s) | 15级下限(41.3~43.3 m/s) | |
13级中限(35.0~37.0 m/s) | 38.7 | |||
14级下限(37.0~39.1 m/s) | 50.3 | |||
14级中限(39.1~42.0 m/s) | 6.5 | |||
改造工程投资/新建工程投资 | 44.1% | 34.1% |
项目 | 2014年 | 2015年 | 2016年 |
城区恢复供电平均时间/h | 4 | 1.78 | 1.77 |
农村恢复供电平均时间/h | 5 | 2.49 | 2.49 |
表3 2014—2016年恢复供电时间
Tab. 3 Power supply restored time in 2014-2016
项目 | 2014年 | 2015年 | 2016年 |
城区恢复供电平均时间/h | 4 | 1.78 | 1.77 |
农村恢复供电平均时间/h | 5 | 2.49 | 2.49 |
1 |
KAMIA H , TATIANA F , YORANM K , et al. Seeking for a climate change mitigation and adaptation nexus: analysis of a long-term power system expansion[J]. Applied Energy, 2020, 262, 114485.
DOI |
2 |
CRAIG M T , CARREÑO L L , ROSSOL M , et al. Effects on power system operations of potential changes in wind and solar generation potential under climate change[J]. Environmental Research Letters, 2019, 14 (3): 034014.
DOI |
3 | MOSER C , BURRI P , GNANSOUNOU E , et al. Climate change and its influence on the planning and operation of electric power systems[J]. Water and Energy Abstracts, 2008, 18 (4): 64- 65. |
4 | WEBER J , WOHLAND J , REYERS M , et al. Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe[J]. PLos ONE, 2018, 13 (8): 0201457. |
5 |
吴昌华. 能源变革, 应对气候变化的唯一选项[J]. 风能, 2016, (2): 20- 22.
DOI |
WU C H . Energy change, the only option to deal with climate change[J]. Wind Energy, 2016, (2): 20- 22.
DOI |
|
6 | 吴克河, 王继业, 李为, 等. 面向能源互联网的新一代电力系统运行模式研究[J]. 中国电机工程学报, 2019, 39 (4): 966- 979. |
WU K H , WANG J Y , LI W , et al. Research on the operation mode of new generation electric power system for the future energy internet[J]. Proceedings of the CSEE, 2019, 39 (4): 966- 979. | |
7 | 许鉴, 高靖, 刘一涛, 等. 基于鲁棒DEA的新能源电力系统投入产出效率评价研究[J]. 可再生能源, 2019, 37 (4): 558- 563. |
XU J , GAO J , LIU Y T , et al. Research on input-output efficiency evaluation of new energy power system based on robust DEA[J]. Renewable Energy Resources, 2019, 37 (4): 558- 563. | |
8 | 范坤乐, 杨承, 王平, 等. 高比例新能源渗透下天然气发电装机容量分配研究[J]. 广东电力, 2020, 33 (1): 1- 8. |
FAN K L , YANG C , WANG P , et al. Study on capacity allocation for gas-fired power generation units based on high penetration of renewable energy[J]. Guangdong Electric Power, 2020, 33 (1): 1- 8. | |
9 | 李整, 秦金磊, 谭文, 等. 基于目标权重导向多目标粒子群的节能减排电力系统优化调度[J]. 中国电机工程学报, 2015, 35 (S1): 67- 74. |
LI Z , QIN J L , TAN W , et al. Optimizing schedule for electric power system of energy-saving and emission-reducing based upon objective-weight oriented multi-objective particle swarm optimization[J]. Proceedings of the CSEE, 2015, 35 (S1): 67- 74. | |
10 | 文旭, 郭琳, 王俊梅. 面向节能减排的电力系统发购电计划研究述评[J]. 电力系统保护与控制, 2015, 43 (9): 136- 144. |
WEN X , GUO L , WANG J M . Overview of power dispatch and purchasing plan in power system from energy-saving and emission-reducing[J]. Power System Protection and Control, 2015, 43 (9): 136- 144. | |
11 |
洪流, 冉碧莲, 刘汉英. 电力节能技术的研究和应用[J]. 资源节约与环保, 2019, (12): 3- 4.
DOI |
HONG L , RAN B L , LIU H Y . Research and application of power saving technology[J]. Resource conservation and environmental protection, 2019, (12): 3- 4.
DOI |
|
12 | 程耀华, 杜尔顺, 田旭, 等. 电力系统中的碳捕集电厂: 研究综述及发展新动向[J]. 全球能源互联网, 2020, 3 (4): 339- 350. |
CHENG Y H , DU E S , TIAN X , et al. Carbon capture power plants in power systems: review and latest research trends[J]. Journal of Global Energy Interconnection, 2020, 3 (4): 339- 350. | |
13 | 王杨. 中国电力低碳转型路径及其优化决策研究[D]. 北京: 华北电力大学, 2018. |
WANG Y. Research on low carbon transition path and optimization strategy of China's power sector[D]. Beijing: North China Electric Power University, 2018. | |
14 | 卢斯煜, 娄素华, 吴耀武. 低碳经济下基于排放轨迹约束的电力系统电源扩展规划模型[J]. 电工技术学报, 2011, 26 (11): 175- 181. |
LU S Y , LOU S H , WU Y W . A model for generation expansion planning of power system based on carbon emission trajectory model under low-carbon economy[J]. Transactions of China Electrotechnical Society, 2011, 26 (11): 175- 181. | |
15 |
夏炎, 范英. 基于减排成本曲线演化的碳减排策略研究[J]. 中国软科学, 2012, (3): 12- 22.
DOI |
XIA Y , FAN Y . Study on emission reduction strategy based on evolutive CO2 abatement cost curve[J]. China Soft Science, 2012, (3): 12- 22.
DOI |
|
16 | 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40 (7): 5493- 5505. |
CHEN G P , DONG Y , LIANG Z F . Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40 (7): 5493- 5505. | |
17 | 李立浧, 张勇军, 徐敏. 我国能源系统形态演变及分布式能源发展[J]. 分布式能源, 2017, 2 (1): 1- 9. |
LI L C , ZHANG Y J , XU M . Morphological evolution of energy system and development of distributed energy in China[J]. Distributed Energy, 2017, 2 (1): 1- 9. | |
18 |
薛禹胜, 吴勇军, 谢云云, 等. 停电防御框架向自然灾害预警的拓展[J]. 电力系统自动化, 2013, 37 (16): 18- 26.
DOI |
XUE Y S , WU Y J , XIE Y Y , et al. Extension of blackout defense scheme to natural disasters early-warning[J]. Automation of Electric Power Systems, 2013, 37 (16): 18- 26.
DOI |
|
19 | 熊小伏, 翁世杰, 王建, 等. 电网台风风险预警系统方案设计[J]. 重庆大学学报, 2014, 37 (7): 27- 32. |
XIONG X F , WENG S J , WANG J , et al. Research and application of typhoon risk early warning system of power grid[J]. Journal of Chongqing University, 2014, 37 (7): 27- 32. | |
20 |
张恒旭, 刘玉田, 张鹏飞. 极端冰雪灾害下电网安全评估需求分析与框架设计[J]. 中国电机工程学报, 2009, 29 (16): 8- 14.
DOI |
ZHANG H X , LIU Y T , ZHANG P F . Requirements analysis and framework design for power system security assessment considering extreme ice disasters[J]. Proceedings of the CSEE, 2009, 29 (16): 8- 14.
DOI |
|
21 | 吴勇军, 薛禹胜, 谢云云, 等. 台风及暴雨对电网故障率的时空影响[J]. 电力系统自动化, 2016, 40 (2): 20- 29. |
WU Y J , XUE Y S , XIE Y Y , et al. Space-time impact of typhoon and rainstorm on power grid fault probability[J]. Automation of Electric Power Systems, 2016, 40 (2): 20- 29. | |
22 | 贺海磊, 郭剑波. 考虑共因失效的电力系统地震灾害风险评估[J]. 中国电机工程学报, 2012, 32 (28): 44- 54. |
HE H L , GUO J B . Seismic disaster risk evaluation for power systems considering common cause failure[J]. Proceedings of the CSEE, 2012, 32 (28): 44- 54. | |
23 |
唐斯庆, 张弥, 李建设, 等. 海南电网"9·26"大面积停电事故的分析与总结[J]. 电力系统自动化, 2006, 30 (1): 1- 7.
DOI |
TANG S Q , ZHANG M , LI J S , et al. Review of blackout in Hainan on September 26th: causes and recommendations[J]. Automation of Electric Power Systems, 2006, 30 (1): 1- 7.
DOI |
|
24 |
曾辉, 孙峰, 李铁, 等. 澳大利亚" 9·28"大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41 (13): 1- 6.
DOI |
ZENG H , SUN F , LI T , et al. Analysis of" 9·28"blackout in South Australia and its enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41 (13): 1- 6.
DOI |
|
25 | 周博文, 陈麒宇, 杨东升. 巴西大停电的思考[J]. 发电技术, 2018, 39 (2): 97- 105. |
ZHOU B W , CHEN Q Y , YANG D S . On the power system large-scale blackout in Brazil[J]. Power Generation Technology, 2018, 39 (2): 97- 105. | |
26 | 杨雯哲. 电网大面积停电应急管理问题与对策研究[D]. 广州: 华南理工大学, 2018. |
YANG W Z. Research on emergency management of large area blackout and countermeasures[D]. Guangzhou: South China University of Technology, 2018. | |
27 | 赵静波, 张思聪, 廖诗武. 美国加州2020年8月中旬停电事故分析及思考[J]. 电力工程技术, 2020, 39 (6): 52- 57. |
ZHAO J B , ZHANG S C , LIAO S W . Analysis and reflection for the rotating outages in mid-August 2020 in California[J]. Electric Power Engineering Technology, 2020, 39 (6): 52- 57. | |
28 | 刘泽扬, 荆朝霞. 美国得州2·15停电初步分析及其对我国电力市场建设的启示[J]. 发电技术, 2021, 42 (1): 131- 139. |
LIU Z Y , JING Z X . Preliminary analysis of the 2·15 power outage in Texas, U.S. and its enlightenment to the construction of China's electricity market[J]. Power Generation Technology, 2021, 42 (1): 131- 139. | |
29 | 冷喜武. 美国得州2021轮停事故分析及其对中国电网改革的启示[J]. 发电技术, 2021, 42 (2): 151- 159. |
LENG X W . The analysis of 2021 Texas'rotating blackout incident and its enlightenment to the reform of China power grid[J]. Power Generation Technology, 2021, 42 (2): 151- 159. | |
30 | 苏盛, 陈金富, 段献忠. 全球暖化与电力系统的相互影响综述[J]. 电网技术, 2010, 34 (2): 33- 40. |
SU S , CHEN J F , DUAN X Z . Interaction between global warming and electric power systems[J]. Power System Technology, 2010, 34 (2): 33- 40. | |
31 |
BADAL F R , DAS P , SARKER SK , et al. A survey on control issues in renewable energy integration and microgrid[J]. Protection and Control of Modern Power Systems, 2019, 4 (1): 1- 27.
DOI |
32 | 席雅雯, 吴俊勇, 石琛, 等. 融合历史数据和实时影响因素的精细化负荷预测[J]. 电力系统保护与控制, 2019, 47 (1): 80- 87. |
XI Y W , WU J Y , SHI C , et al. A refined load forecasting based on historical data and real-time influencing factors[J]. Power System Protection and Control, 2019, 47 (1): 80- 87. | |
33 | 高鑫, 唐飞, 张童彦, 等. 配电网防风抗灾加固措施优化决策方法[J]. 发电技术, 2021, 42 (1): 78- 85. |
GAO X , TANG F , ZHANG T Y , et al. Optimal decision-making method of wind-proof and disaster-resistant reinforcement[J]. Power Generation Technology, 2021, 42 (1): 78- 85. | |
34 | 赵晓龙, 方恒福, 王罡, 等. 面向弹性配电网防灾减灾的组件重要度评估方法[J]. 电力系统保护与控制, 2020, 48 (16): 28- 36. |
ZHAO X L , FANG H F , WANG G , et al. Component importance indices evaluation considering disaster prevention and mitigation in resilient distribution systems[J]. Power System Protection and Control, 2020, 48 (16): 28- 36. | |
35 | 杨涛, 郭琦, 肖天贵. "一带一路"沿线自然灾害分布特征研究[J]. 中国安全生产科学技术, 2016, 12 (10): 165- 171. |
YANG T , GUO Q , XIAO T G . Research on distribution characteristics of natural disasters along "the Belt and Road"[J]. Journal of Safety Science and Technology, 2016, 12 (10): 165- 171. | |
36 | YING M , ZHANG W , YU H , et al. An overview of the china meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31 (2): 287- 301. |
37 | 杨思全. "一带一路"区域防灾减灾战略思路研究[J]. 中国保险, 2017, (3): 7- 11. |
YANG S Q . Study on the strategic thought of regional disaster prevention and reduction along "the Belt and Road"[J]. China Insurance, 2017, 7- 11. | |
38 | 毛星竹, 刘建红, 李同昇, 等. "一带一路"沿线国家自然灾害时空分布特征分析[J]. 自然灾害学报, 2018, 27 (1): 1- 8. |
MAO X Z , LIU J H , LI T S , et al. Spatio-temporal patterns of natural disasters in countries along the Belt and Road[J]. Journal of Natural Disasters, 2018, 27 (1): 1- 8. | |
39 | 任国玉, 封国林, 严中伟. 中国极端气候变化观测研究回顾与展望[J]. 气候与环境研究, 2010, 15 (4): 337- 353. |
REN G Y , FENG G L , YAN Z W . Progresses in observation studies of climate extremes and changes in mainland China[J]. Climatic and Environmental Research, 2010, 15 (4): 337- 353. | |
40 | 徐国新, 夏清, 康重庆. 电网抗灾投资决策方法研究[J]. 电力自动化设备, 2010, 30 (2): 22- 27. |
XU G X , XIA Q , KANG C Q . Research on investment decision-making method of disaster-proof power grid[J]. Electric Power Automation Equipment, 2010, 30 (2): 22- 27. | |
41 | 夏清, 徐国新, 康重庆. 抗灾型电力系统的规划[J]. 电网技术, 2009, 33 (3): 1- 7. |
XIA Q , XU G X , KANG C Q . Planning of anti-disaster power system[J]. Power System Technology, 2009, 33 (3): 1- 7. | |
42 | 龚贤夫, 覃芸, 段瑶, 等. 广东沿海城市防风保底电网规划方法[J]. 广东电力, 2017, 30 (7): 7- 11. |
GONG X F , QIN Y , DUAN Y , et al. Different power grid planning method of typhoon protection in Guangdong coastal cities[J]. Guangdong Electric Power, 2017, 30 (7): 7- 11. |
[1] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[2] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[3] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[4] | 付红军, 朱劭璇, 王步华, 谢岩, 熊浩清, 唐晓骏, 杜晓勇, 李程昊, 李晓萌. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362. |
[5] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[6] | 贾晓强, 杨永标, 杜姣, 甘海庆, 杨楠. 气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究[J]. 发电技术, 2023, 44(6): 790-799. |
[7] | 潘晓杰, 徐友平, 解治军, 王玉坤, 张慕婕, 石梦璇, 马坤, 胡伟. 堆栈式集成学习驱动的电力系统暂态稳定预防控制优化方法[J]. 发电技术, 2023, 44(6): 865-874. |
[8] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[9] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[10] | 吴灏, 许晓, 彭紫楠, 郭宁辉, 王淇锋. 基于电网云数据管理的电气设备大数据移动实验室及其应用研究[J]. 发电技术, 2023, 44(3): 417-424. |
[11] | 杜将武, 唐小强, 罗志伟, 刘敦楠, 陈积旭, 徐尔丰, 毕圣. 面向综合能源园区的丰枯电价定价方法[J]. 发电技术, 2023, 44(2): 261-269. |
[12] | 肖洋, 李志强, 程林, 汤磊, 夏潮, 梁英, 宋锐, 王东阳, 李贺文. 西北电网集中式调相机AVC综合协调控制策略[J]. 发电技术, 2023, 44(2): 270-279. |
[13] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
[14] | 董宸, 吴强, 黄河, 章锐, 杨秀媛. 基于免疫算法的电网拓扑结构识别[J]. 发电技术, 2023, 44(1): 125-135. |
[15] | 高骞, 杨俊义, 洪宇, 孙小磊, 朱前进, 俞天, 王鑫, 王琳媛, 李泽森. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术, 2022, 43(6): 851-859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||