Power Generation Technology ›› 2024, Vol. 45 ›› Issue (6): 1163-1172.DOI: 10.12096/j.2096-4528.pgt.24017
• New Energy • Previous Articles
Chaojun GUAN1, Zhengling LEI1, Haibo HUO1, Fang WANG1, Guoquan YAO2, Tao LIU3
Received:
2024-01-22
Revised:
2024-04-29
Published:
2024-12-31
Online:
2024-12-30
Contact:
Zhengling LEI
Supported by:
CLC Number:
Chaojun GUAN, Zhengling LEI, Haibo HUO, Fang WANG, Guoquan YAO, Tao LIU. Active Disturbance Rejection Control of Output Voltage of Solid Oxide Fuel Cell Based on Reinforcement Learning[J]. Power Generation Technology, 2024, 45(6): 1163-1172.
参数 | 数值 |
---|---|
绝对温度 | 1 273 |
法拉第常数 | 96 485 |
通用气体常数 | 8.314 |
理想标准电位 | 1.18 |
电池数 | 384 |
常数 | |
氢气的阀摩尔常数 | |
水蒸气的阀摩尔常数 | |
氧气的阀摩尔常数 | |
氢气流响应时间 | 26.1 |
水的响应时间 | 78.3 |
氧气流响应时间 | 2.91 |
燃料重整时间常数 | 5 |
氢氧比 | 1.145 |
Tab. 1 Values for SOFC system parameters
参数 | 数值 |
---|---|
绝对温度 | 1 273 |
法拉第常数 | 96 485 |
通用气体常数 | 8.314 |
理想标准电位 | 1.18 |
电池数 | 384 |
常数 | |
氢气的阀摩尔常数 | |
水蒸气的阀摩尔常数 | |
氧气的阀摩尔常数 | |
氢气流响应时间 | 26.1 |
水的响应时间 | 78.3 |
氧气流响应时间 | 2.91 |
燃料重整时间常数 | 5 |
氢氧比 | 1.145 |
参数 | 取值 |
---|---|
折扣因子 | 0.99 |
经验池大小 | 2×106 |
Actor网络学习率 | 0.001 |
Critic网络学习率 | 0.000 1 |
样本学习个数 | 128 |
训练步数 | 4 000 |
软更新系数 | 0.005 |
延迟更新参数 | 2 |
Tab. 2 Main hyperparameters of ADRC-TD3 algorithm
参数 | 取值 |
---|---|
折扣因子 | 0.99 |
经验池大小 | 2×106 |
Actor网络学习率 | 0.001 |
Critic网络学习率 | 0.000 1 |
样本学习个数 | 128 |
训练步数 | 4 000 |
软更新系数 | 0.005 |
延迟更新参数 | 2 |
1 | YANG B, LI Y, LI J,et al .Comprehensive summary of solid oxide fuel cell control:a state-of-the-art review[J].Protection and Control of Modern Power Systems,2022,7(3):1-31. doi:10.1186/s41601-022-00251-0 |
2 | NECHACHE A, HODY S .Alternative and innovative solid oxide electrolysis cell materials:a short review[J].Renewable and Sustainable Energy Reviews,2021,149:111322. doi:10.1016/j.rser.2021.111322 |
3 | 郭心如,郭雨旻,罗方,等 .磷酸燃料电池的能效、㶲及生态特性分析[J].发电技术,2022,43(1):73-82. |
GUO X R, GUO Y M, LUO F,et al .Analysis of energy,exergy and ecology characteristics of phosphoric acid fuel cell[J].Power Generation Technology,2022,43(1):73-82. | |
4 | 和萍,祁盼,申润杰,等 .计及风电和燃料电池的综合能源系统阻尼特性分析[J].电力科学与技术学报,2020,35(1):14-23. |
HE P, QI P, SHEN R J,et al .Analysis of damping characteristics of an integrated energy system with hybrid wind-fuel cells integrated[J].Journal of Electric Power Science and Technology,2020,35(1):14-23. | |
5 | LAN T, STRUNZ K .Multiphysics transients modeling of solid oxide fuel cells:methodology of circuit equivalents and use in EMTP-type power system simulation[J].IEEE Transactions on Energy Conversion,2017,32(4):1309-1321. doi:10.1109/TEC.2017.2687886 |
6 | BAO C, WANG Y, FENG D,et al .Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J].Progress in Energy and Combustion Science,2018,66:83-140. doi:10.1016/j.pecs.2017.12.002 |
7 | 张瑞宇,王雨晴,任佳伟 .基于丙烷催化部分氧化的微管式固体氧化物燃料电池系统特性研究[J].发电技术,2024,45(3):486-493. |
ZHANG R Y, WANG Y Q, REN J W .Characteristics research of a micro-tubular solid oxide fuel cell system based on catalytic partial oxidation of propane[J].Power Generation Technology,2024,45(3):486-493. | |
8 | 李林,刘彤宇,李爽,等 .甲醇重整制氢燃料电池发电研究进展[J].发电技术,2022,43(1):44-53. doi:10.12096/j.2096-4528.pgt.21116 |
LI L, LIU T Y, LI S,et al .Research progress of hydrogen production by methanol reforming for fuel cell power generation[J].Power Generation Technology,2022,43(1):44-53. doi:10.12096/j.2096-4528.pgt.21116 | |
9 | KOMATSU Y, BRUS G, KIMIJIMA S,et al .The effect of overpotentials on the transient response of the 300 W SOFC cell stack voltage[J].Applied Energy,2014,115:352-359. doi:10.1016/j.apenergy.2013.11.017 |
10 | SUN L, JIN Y, SHEN J,et al .Sustainable residential micro-cogeneration system based on a fuel cell using dynamic programming-based economic day-ahead scheduling[J].ACS Sustainable Chemistry & Engineering,2021,9(8):3258-3266. doi:10.1021/acssuschemeng.0c08725 |
11 | 王倩如,王彩霞,顾吉鹏 .固体氧化物燃料电池的神经模糊控制策略研究[J].热能动力工程,2022,37(10):198-206. doi:10.1016/j.apenergy.2021.118214 |
WANG Q R, WANG C X, GU J P .Study on neural fuzzy control strategy of solid oxide fuel cell[J].Journal of Engineering for Thermal Energy and Power,2022,37(10):198-206. doi:10.1016/j.apenergy.2021.118214 | |
12 | ZHANG T, LI H, TU X,et al .Optimization of SOC fractional PID control parameters for solid oxide battery based on improved firefly algorithm[C]//2021 3rd International Conference on Industrial Artificial Intelligence (IAI).Shenyang,China:IEEE,2021:1-5. doi:10.1109/iai53119.2021.9619450 |
13 | WU X, GAO D .Optimal robust control strategy of a solid oxide fuel cell system[J].Journal of Power Sources,2018,374:225-236. doi:10.1016/j.jpowsour.2017.10.070 |
14 | ABBAKER A O, WANG H, TIAN Y .Voltage control of solid oxide fuel cell power plant based on intelligent proportional integral-adaptive sliding mode control with anti-windup compensator[J].Transactions of the Institute of Measurement and Control,2020,42(1):116-130. doi:10.1177/0142331219867779 |
15 | LI J, YU T, YANG B .A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning[J].Applied Energy,2021,304:117541. doi:10.1016/j.apenergy.2021.117541 |
16 | LI J, YU T .A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning[J].Journal of Cleaner Production,2021,321:128929. doi:10.1016/j.jclepro.2021.128929 |
17 | HAN J .From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906. doi:10.1109/tie.2008.2011621 |
18 | ZHOU J, XUE S, XUE Y,et al .A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning[J].Energy,2021,224:120118. doi:10.1016/j.energy.2021.120118 |
19 | PADULLES J, AULT G W, MCDONALD J R .An integrated SOFC plant dynamic model for power systems simulation[J].Journal of Power sources,2000,86(1/2):495-500. doi:10.1016/s0378-7753(99)00430-9 |
20 | SUN L, HUA Q, SHEN J,et al .A combined voltage control strategy for fuel cell[J].Sustainability,2017,9(9):1517. doi:10.3390/su9091517 |
21 | LI Y, SHEN J, LU J .Constrained model predictive control of a solid oxide fuel cell based on genetic optimization[J].Journal of Power Sources,2011,196(14):5873-5880. doi:10.1016/j.jpowsour.2011.03.010 |
22 | ZHAO C, LI D .Control design for the SISO system with the unknown order and the unknown relative degree[J].ISA Transactions,2014,53(4):858-872. doi:10.1016/j.isatra.2013.10.001 |
23 | LADOSZ P, WENG L, KIM M,et al .Exploration in deep reinforcement learning:a survey[J].Information Fusion,2022,85:1-22. doi:10.1016/j.inffus.2022.03.003 |
24 | FUJIMOTO S, VAN HOOF H, MEGER D .Addressing function approximation error in actor-critic methods[J].Proceedings of the 35th International Conference on Machine Learning,2018,80:1587-1596. |
25 | NGUYEN T T, NGUYEN N D, NAHAVANDI S .Deep reinforcement learning for multiagent systems:a review of challenges,solutions,and applications[J].IEEE Transactions on Cybernetics,2020,50(9):3826-3839. doi:10.1109/tcyb.2020.2977374 |
[1] | Jianqiang YE, Dunhu SUN. Research on Power Planning Based on Robust Optimization Under Carbon Trading Condition [J]. Power Generation Technology, 2024, 45(3): 566-574. |
[2] | Ruiyu ZHANG, Yuqing WANG, Jiawei REN. Characteristics Research of a Micro-Tubular Solid Oxide Fuel Cell System Based on Catalytic Partial Oxidation of Propane [J]. Power Generation Technology, 2024, 45(3): 486-493. |
[3] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[4] | Xiaobiao FU, Jiaqi HOU, Baoju LI, Yakun WEN, Xiaowen LAI, Lei GUO, Zhiwei WANG, Yao WANG, Haifeng ZHANG, Dexin LI. A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction [J]. Power Generation Technology, 2024, 45(2): 299-311. |
[5] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[6] | Yanping ZHANG, Yuchao ZHANG, Yifei LIU. Optimization Design of Trough Solar Power Plant Based on Probabilistic Reliability [J]. Power Generation Technology, 2020, 41(6): 590-598. |
[7] | Yunhui SHI,Chuangxin GUO,Xiao DING. Integrated Energy System Economic Dispatch Based on Affine Adjustable Robust Optimization [J]. Power Generation Technology, 2020, 41(2): 118-125. |
[8] | Yunhui SHI,Chuangxin GUO. Optimal Dispatch of Integrated Energy System Considering Operational Risks in the Presence of Energy Storage [J]. Power Generation Technology, 2020, 41(1): 56-63. |
[9] | Bin ZHANG,Chao ZHANG,Xiaojuan HAN. Research on Load Frequency Control Strategy Based on Cloud PI Controller in Large-scale Wind Power Connected to Grid [J]. Power Generation Technology, 2019, 40(6): 516-520. |
[10] | LIU Shan-bo, YU Ding-yi. Application on Uncertainty Analysis in Boiler Efficiency Test [J]. Power Generation Technology, 2017, 38(1): 44-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||