Power Generation Technology ›› 2024, Vol. 45 ›› Issue (3): 448-457.DOI: 10.12096/j.2096-4528.pgt.23068
• Flexible Power Generation Technology • Previous Articles Next Articles
Xiaolian ZHANG, Achuan SUN, Sipeng HAO, Leyan XU, Qichuan WU
Received:
2023-06-07
Revised:
2023-08-30
Published:
2024-06-30
Online:
2024-07-01
Supported by:
CLC Number:
Xiaolian ZHANG, Achuan SUN, Sipeng HAO, Leyan XU, Qichuan WU. Multi-Machine Cooperative Control Strategy of Wind Farm Participating in Power Grid Frequency Modulation[J]. Power Generation Technology, 2024, 45(3): 448-457.
系统参数 | 数值 |
---|---|
叶轮半径/m | 20 |
切入(额定)风速/(m/s) | 3(12) |
叶轮额定转速/(rad/s) | 3.457 |
转动惯量/(kg∙m2) | 5.492×105 |
最佳叶尖速比 | 5.8 |
最大风能利用系数 | 0.460 3 |
额定功率/MW | 0.6 |
Tab. 1 Wind turbine model parameters
系统参数 | 数值 |
---|---|
叶轮半径/m | 20 |
切入(额定)风速/(m/s) | 3(12) |
叶轮额定转速/(rad/s) | 3.457 |
转动惯量/(kg∙m2) | 5.492×105 |
最佳叶尖速比 | 5.8 |
最大风能利用系数 | 0.460 3 |
额定功率/MW | 0.6 |
控制策略 | ||
---|---|---|
改进协同控制策略 | 49.811 | 0.189 |
传统调频控制策略 | 49.794 | 0.206 |
Tab. 2 Comparison of frequency response improvement of different control methods under the constant wind speed
控制策略 | ||
---|---|---|
改进协同控制策略 | 49.811 | 0.189 |
传统调频控制策略 | 49.794 | 0.206 |
风速/(m/s) | 转速初值/pu | 转速最低值/pu | 转速变化量/pu | |||
---|---|---|---|---|---|---|
改进策略 | 传统策略 | 改进策略 | 传统策略 | 改进策略 | 传统策略 | |
9 | 2.621 | 2.621 | 2.609 | 2.603 | 0.125 0 | 0.018 5 |
8 | 2.330 | 2.330 | 2.320 | 2.308 | 0.010 0 | 0.022 2 |
7 | 2.039 | 2.039 | 2.033 | 2.011 | 0.005 8 | 0.027 5 |
6 | 1.747 | 1.747 | 1.746 | 1.713 | 0.001 0 | 0.034 3 |
Tab. 3 Maximum change in speed under the load fluctuation of 10%
风速/(m/s) | 转速初值/pu | 转速最低值/pu | 转速变化量/pu | |||
---|---|---|---|---|---|---|
改进策略 | 传统策略 | 改进策略 | 传统策略 | 改进策略 | 传统策略 | |
9 | 2.621 | 2.621 | 2.609 | 2.603 | 0.125 0 | 0.018 5 |
8 | 2.330 | 2.330 | 2.320 | 2.308 | 0.010 0 | 0.022 2 |
7 | 2.039 | 2.039 | 2.033 | 2.011 | 0.005 8 | 0.027 5 |
6 | 1.747 | 1.747 | 1.746 | 1.713 | 0.001 0 | 0.034 3 |
1 | 张子扬,张宁,杜尔顺,等 .双高电力系统频率安全问题评述及其应对措施[J].中国电机工程学报,2022,42(1):1-25. |
ZHANG Z Y, ZHANG N, DU E S,et al .Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics[J].Proceedings of the CSEE,2022,42(1):1-25. | |
2 | 张旭,陈云龙,岳帅,等 .风电参与电力系统调频技术研究的回顾与展望[J].电网技术,2018,42(6):1793-1803. |
ZHANG X, CHEN Y L, YUE S,et al .Retrospect and prospect of research on frequency regulation technology of power system by wind power[J].Power System Technology,2018,42(6):1793-1803. | |
3 | 左强,李波,杨世海 .大规模空调负荷参与新能源电力系统调频的无模型自适应控制方法[J].电力科学与技术学报,2023,38(2):224-231. |
ZUO Q, LI B, YANG S H .Model-free adaptive frequency control of renewable energy power systems with participation of large-scale air conditioner loads[J].Journal of Electric Power Science and Technology,2023,38(2):224-231. | |
4 | 王颖,王晓文,陆铭阳 .新能源高占比电力系统惯量相关问题研究[J].东北电力技术,2023,44(2):20-27. doi:10.3969/j.issn.1004-7913.2023.02.005 |
WANG Y, WANG X W, LU M Y .Research on inertia related problems of high proportion of new energy resources in power system[J].Northeast Electric Power Technology,2023,44(2):20-27. doi:10.3969/j.issn.1004-7913.2023.02.005 | |
5 | ARANI M F M . MOHAMED Y A R I .Analysis and mitigation of undesirable impacts of implementing frequency support controllers in wind power generation[J].IEEE Transactions on Energy Conversion,2016,31(1):174-186. doi:10.1109/tec.2015.2484380 |
6 | 刘洪波,彭晓宇,张崇,等 .风电参与电力系统调频控制策略综述[J].电力自动化设备,2021,41(11):81-92. |
LIU H B, PENG X Y, ZHANG C,et al .Overview of wind power participating in frequency regulation control strategy for power system[J].Electric Power Automation Equipment,2021,41(11):81-92. | |
7 | 李靖,王志和,倪浩 .基于改进下垂控制的直流微网运行研究[J].发电技术,2021,42(6):765-774. doi:10.12096/j.2096-4528.pgt.21003 |
LI J, WANG Z H, NI H .Research on DC microgrid operation based on improved droop control[J].Power Generation Technology,2021,42(6):765-774. doi:10.12096/j.2096-4528.pgt.21003 | |
8 | 刘辉,罗薇,苏懿,等 .计及ROCOF与转子动能的风电机组自适应下垂控制策略[J].电力工程技术,2023,42(6):161-169. doi:10.12158/j.2096-3203.2023.06.017 |
LIU H, LUO W, SU Y,et al .Adaptive droop control strategy for wind turbines based on ROCOF and rotor kinetic energy[J].Electric Power Engineering Technology,2023,42(6):161-169. doi:10.12158/j.2096-3203.2023.06.017 | |
9 | 李少林,王伟胜,张兴,等 .风力发电对系统频率影响及虚拟惯量综合控制[J].电力系统自动化,2019,43(15): 64-70. doi:10.7500/AEPS20190103005 |
LI S L, WANG W S, ZHANG X,et al .Impact of wind power on power system frequency and combined virtual inertia control[J].Automation of Electric Power Systems,2019,43(15):64-70. doi:10.7500/AEPS20190103005 | |
10 | 张怡,张秀强 .双馈型风电系统虚拟惯量协同控制策略的研究[J].机械设计与制造,2023(8):259-264. doi:10.3969/j.issn.1001-3997.2023.08.053 |
ZHANG Y, ZHANG X Q .Research on virtual inertia cooperative control strategy of doubly-fed wind power system[J].Machinery Design & Manufacture,2023(8):259-264. doi:10.3969/j.issn.1001-3997.2023.08.053 | |
11 | VIDYANANDAN K V, SENROY N .Primary frequency regulation by deloaded wind turbines using variable droop[J].IEEE Transactions on Power Systems,2013,28(2):837-846. doi:10.1109/tpwrs.2012.2208233 |
12 | 张祥宇,沈文奇,林毅,等 .同步耦合双馈风机的虚拟惯量优化控制技术[J].电网与清洁能源,2022,38(9):126-133. doi:10.3969/j.issn.1674-3814.2022.09.016 |
ZHANG X Y, SHEN W Q, LIN Y,et al .Virtual inertia control optimization of synchronous coupled doubly-fed induction wind generator[J].Power System and Clean Energy,2022,38(9):126-133. doi:10.3969/j.issn.1674-3814.2022.09.016 | |
13 | 林旭,李军,杨德健,等 .基于功率轨迹预设的双馈风电机组虚拟惯量控制策略[J].智慧电力,2023,51(10):47-53. doi:10.3969/j.issn.1673-7598.2023.10.007 |
LIN X, LI J, YANG D J,et al .Virtual inertia control strategy for doubly-fed induction generator based on preset power trajectory[J].Smart Power,2023,51(10):47-53. doi:10.3969/j.issn.1673-7598.2023.10.007 | |
14 | 张冠锋,杨俊友,孙峰,等 .基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J].电工技术学报,2017,32(22):225-232. |
ZHANG G F, YANG J Y, SUN F,et al .Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J].Transactions of China Electrotechnical Society,2017,32(22):225-232. | |
15 | YE H, PEI W, QI Z .Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems[J].IEEE Transactions on Power Systems,2016,31(5):3414-3423. doi:10.1109/tpwrs.2015.2490342 |
16 | MORREN J, PIERIK J, DE HAAN S W H .Inertial response of variable speed wind turbines[J].Electric Power Systems Research,2006,76(11):980-987. doi:10.1016/j.epsr.2005.12.002 |
17 | 何廷一,孙领,王晨光,等 .避免频率二次跌落的风电场一次调频功率分配方法[J].电力系统保护与控制,2022,50(11):12-20. |
HE T Y, SUN L, WANG C G,et al .A method of primary frequency regulation power distribution in a wind farm to avoid secondary frequency drop[J].Power System Protection and Control,2022,50(11):12-20. | |
18 | 张蕊,李晓明,高泽明,等 .考虑风速差异的风电场调频备用协调控制策略[J].电力建设,2023,44(2):101-109. |
ZHANG R, LI X M, GAO Z M,et al .Coordinated control of frequency-regulation reserve capacity for wind farm considering wind speed difference[J].Electric Power Construction,2023,44(2):101-109. | |
19 | 侍乔明,王刚,李海英,等 .考虑调频能力的风电场虚拟惯量多机协同控制策略[J].电网技术,2019,43(11):4005-4017. doi:10.13335/j.1000-3673.pst.2019.0129 |
SHI Q M, WANG G, LI H Y,et al .Coordinated virtual inertia control strategy of multiple wind turbines in wind farms considering frequency regulation capability[J].Power System Technology,2019,43(11):4005-4017. doi:10.13335/j.1000-3673.pst.2019.0129 | |
20 | 曾雪洋,张纯,王顺亮,等 .基于减载系数变化的风电机组一次调频控制[J].电力自动化设备,2022,42(8):119-125. |
ZENG X Y, ZHANG C, WANG S L,et al .Primary frequency control of wind turbine based on deloading coefficient variation[J].Electric Power Automation Equipment,2022,42(8):119-125. | |
21 | 陈宇航,王刚,侍乔明,等 .一种新型风电场虚拟惯量协同控制策略[J].电力系统自动化,2015,39(5):27-33. doi:10.7500/AEPS20140212007 |
CHEN Y H, WANG G, SHI Q M,et al .A new coordinated virtual inertia control strategy for wind farms[J].Automation of Electric Power Systems,2015,39(5):27-33. doi:10.7500/AEPS20140212007 | |
22 | 潘文霞,全锐,王飞 .基于双馈风电机组的变下垂系数控制策略[J].电力系统自动化,2015,39(11):126-131. doi:10.7500/AEPS20140825011 |
PAN W X,QUAN R,WANG F,A variable droop control strategy for doubly-fed induction generators[J].Automation of Electric Power Systems,2015,39(11):126-131. doi:10.7500/AEPS20140825011 | |
23 | 丁磊,尹善耀,王同晓,等 .考虑惯性调频的双馈风电机组主动转速保护控制策略[J].电力系统自动化,2015,39(24):29-34. doi:10.7500/AEPS20150529018 |
DING L, YIN S Y, WANG T X,et al .Active rotor speed protection strategy for DFIG-based wind turbines with inertia control[J].Automation of Electric Power Systems,2015,39(24):29-34. doi:10.7500/AEPS20150529018 | |
24 | 郑金鑫 .双馈风电机组的转速保护及协同调频研究[D].济南:山东大学,2019. |
ZHENG J X .Rotor speed protection and coordinated control of DFIG wind turbines[D].Jinan:Shandong University,2019. | |
25 | 乔颖,郭晓茜,鲁宗相,等 .考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J].电网技术,2020,44(3):807-815. doi:10.13335/j.1000-3673.pst.2019.0467 |
QIAO Y, GUO X Q, LU Z X,et al .Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J].Power System Technology,2020,44(3):807-815. doi:10.13335/j.1000-3673.pst.2019.0467 | |
26 | 王学财 .双馈风电机组虚拟惯量调频特性研究及动态转速保护策略[D].济南:山东大学,2018. doi:10.1109/ciced.2018.8592065 |
WANG X C .Dynamic rotor speed protection for DFIG based wind turbines with virtual inertia control[D].Jinan:Shandong University,2018. doi:10.1109/ciced.2018.8592065 | |
27 | LIN B, ZHANG X, BU J,et al .A variable coefficient overspeed load shedding control for frequency regulation based on feedforward control[C]//2022 International Conference on Power Energy Systems and Applications (ICoPESA).Singapore,IEEE,2022:122-130. doi:10.1109/icopesa54515.2022.9754419 |
28 | 蔡斌军,何雍,李朝旗 .基于Boost变换器的D-PMSG风力发电系统MPPT控制[J].微特电机,2023,51(3):59-62. doi:10.3969/j.issn.1004-7018.2023.03.011 |
CAI B J, HE Y, LI C Q .D-PMSG wind power generation system MPPT control based on boost converter[J].Small & Special Electrical Machines,2023,51(3):59-62. doi:10.3969/j.issn.1004-7018.2023.03.011 | |
29 | 李阳 .风电机组参与电网一次调频的控制策略设计与实现[D].南京:南京理工大学,2019. |
LI Y .Design and implementation of control strategy for wind turbine participating in primary frequency regulation of power grid[D].Nanjing:Nanjing University of Science and Technology,2019. | |
30 | 张小莲 .风机最大功率点跟踪的湍流影响机理研究与性能优化[D].南京:南京理工大学,2014. |
ZHANG X L .Study on turbulence influence Mechanism and performance optimization of fan maximum power point tracking[D].Nanjing:Nanjing University of Science and Technology,2014. | |
31 | 陈杰,龚春英,陈家伟,等 .一种新型的风力发电全功率变流器[J] 电工技术学报,2012,27(11):160-168. |
CHEN J, GONG C Y, CHEN J W,et al .A novel full-size power converter for wind energy conversion system[J].Transactions of China Electrotechnical Society,2012,27(11):160-168. | |
32 | 周连俊,殷明慧,杨炯明,等 .考虑变化湍流风速条件的风电机组改进自适应转矩控制[J].电力系统自动化,2021,45(1):184-191. doi:10.7500/AEPS20200603001 |
ZHOU L J, YIN M H, YANG J M,et al .Improved adaptive torque control for wind turbine considering varying turbulence conditions[J].Automation of Electric Power Systems,2021,45(1):184-191. doi:10.7500/AEPS20200603001 | |
33 | 张正阳,殷明慧,李阳,等 .考虑机组稳定约束的风机一次调频控制策略[J].中国电机工程学报,2023,43(4):1471-1481. |
ZHANG Z Y, YIN M H, LI Y,et al .Turbine stability-constrained primary frequency control of wind turbine generator[J].Proceedings of the CSEE,2023,43(4):1471-1481. |
[1] | Hai YI, Zhouan LÜ, Lingli ZHANG, Xi CHEN, Dian LIU, Yuwei HUANG, Xingxing HAN, Chang XU. Onshore Wind Farm Collector Circuit Division and Topology Optimization Based on Improved Fuzzy C-Means Clustering [J]. Power Generation Technology, 2024, 45(4): 675-683. |
[2] | Lin LIU, Dalong WANG, Xiao QI, Zhenbo ZHOU, Huanxin LIN, Chuanwei CAI. Study on Double Phase-Locked Loop on the Synthetic Inertia Control of Offshore Wind Farm Frequency Regulation [J]. Power Generation Technology, 2024, 45(2): 282-290. |
[3] | Jinzhao WANG, Gangui YAN, Kan LIU. Research on Model Reduction of Direct Drive Wind Farm Subsynchronous Oscillation Analysis Based on Alternating Direction Implicit Balanced Truncation Method [J]. Power Generation Technology, 2023, 44(6): 850-858. |
[4] | Jiale KANG, Hao YU, Yao DUAN, Wuhui CHEN, Danhui WANG. Equivalent Modeling Method of Sub-synchronous Oscillation in Wind Farm [J]. Power Generation Technology, 2022, 43(6): 880-891. |
[5] | Xiaoguang CHEN, Xiuyuan YANG, Zhenlin WANG, Haoyang WANG. Energy Storage Capacity Allocation Scheme of Wind Farm Considering Multi-Objective Optimization Model [J]. Power Generation Technology, 2022, 43(5): 718-730. |
[6] | Yongrui ZHANG, Jie YAN, Aimei LIN, Shuang HAN, Yongqian LIU. Integrated Correction Method of Multi-point Numerical Weather Prediction Wind Speed and Irradiance [J]. Power Generation Technology, 2022, 43(2): 278-286. |
[7] | Zhou YANG, Renxin YANG, Gang SHI, Jianwen ZHANG. A Novel Control Strategy for AC Fault Ride Through in Multi-terminal DC System [J]. Power Generation Technology, 2022, 43(2): 268-277. |
[8] | Zhiwei ZHANG, Jianping ZHANG, Ming LIU, Haipeng JI, Haojun ZHU, Shengdi ZHOU. Analysis on Variation Characteristics of Offshore Wind Resources in Luchao Port [J]. Power Generation Technology, 2022, 43(2): 260-267. |
[9] | Bin XU, Shuai XUE, Houlei GAO, Fang PENG. Development Status and Prospects of Offshore Wind Farms and It’s Key Technology [J]. Power Generation Technology, 2022, 43(2): 227-235. |
[10] | Zheng LI, Xiaojiang GUO, Xuhui SHEN, Haiyan TANG. Summary of Technologies for the Development of Offshore Wind Power Industry in China [J]. Power Generation Technology, 2022, 43(2): 186-197. |
[11] | Sha LIU, Zhe SUN, Zifeng QIU, Yan HU. Unmanned Aerial Vehicle Image Dehazing Algorithm Based on Simple Linear Iterative Clustering Optimization and Its Application in Wind Farm [J]. Power Generation Technology, 2020, 41(6): 608-616. |
[12] | Yue ZHU,Junmin SHA,Jing ZHAO. Simulation Study on Low Voltage Ride-through Capability of Wind Farms With Different Units [J]. Power Generation Technology, 2020, 41(3): 328-333. |
[13] | Yu CHEN,Xiao PENG,Jing DING,Yazhou WANG,Jingping SHAO. Research on the Method of Stabilizing the Power Output Fluctuation of Wind Farm by Electric Vehicles [J]. Power Generation Technology, 2019, 40(1): 91-98. |
[14] | Yu WANG. Analysis on the Characteristics of Wind Power Time Series and Its Impact on Provincial Power Grid [J]. Power Generation Technology, 2018, 39(5): 475-482. |
[15] | Xindong FAN,Xiuyuan YANG,Xincheng JIN. An Overview of Active Power Control in Wind Farms [J]. Power Generation Technology, 2018, 39(3): 268-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||