Power Generation Technology ›› 2023, Vol. 44 ›› Issue (4): 525-533.DOI: 10.12096/j.2096-4528.pgt.22129
• Power Generation and Environmental Protection • Previous Articles Next Articles
Zhigang LUO1, Chengbing HE2, Haoran MENG1, Guodong LIU1, Peng SHEN1, Jun ZHANG1, Haoliang ZHANG1
Received:
2023-01-06
Published:
2023-08-31
Online:
2023-08-29
Contact:
Chengbing HE
Supported by:
CLC Number:
Zhigang LUO, Chengbing HE, Haoran MENG, Guodong LIU, Peng SHEN, Jun ZHANG, Haoliang ZHANG. Research on Optimization Method of Precise Ammonia Injection in SCR de-NO x System of Coal-fired Power Plant[J]. Power Generation Technology, 2023, 44(4): 525-533.
编号 | 网络层 | 卷积核 | 输出大小 | 零补 | ||
---|---|---|---|---|---|---|
大小 | 步长 | 数目 | ||||
1 | 输入层 | — | — | — | 120×1 | 否 |
2 | 卷积层1 | 8×1 | 4×1 | 16 | 32×16 | 是 |
3 | 池化层1 | 2×1 | 2×1 | 8 | 16×8 | 否 |
4 | 卷积层2 | 8×1 | 2×1 | 8 | 8×8 | 是 |
5 | 池化层2 | 2×1 | 2×1 | 4 | 4×4 | 否 |
6 | 全连接层 | 8 | — | 1 | 8×1 | 否 |
7 | 输出层 | 1 | — | 1 | 1×1 | 否 |
Tab.1 Structure parameters of ICNN-1D
编号 | 网络层 | 卷积核 | 输出大小 | 零补 | ||
---|---|---|---|---|---|---|
大小 | 步长 | 数目 | ||||
1 | 输入层 | — | — | — | 120×1 | 否 |
2 | 卷积层1 | 8×1 | 4×1 | 16 | 32×16 | 是 |
3 | 池化层1 | 2×1 | 2×1 | 8 | 16×8 | 否 |
4 | 卷积层2 | 8×1 | 2×1 | 8 | 8×8 | 是 |
5 | 池化层2 | 2×1 | 2×1 | 4 | 4×4 | 否 |
6 | 全连接层 | 8 | — | 1 | 8×1 | 否 |
7 | 输出层 | 1 | — | 1 | 1×1 | 否 |
NO x 质量浓度波动偏差/(mg/m3) | 时间占比/% | ||||||
---|---|---|---|---|---|---|---|
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | ||
0.59 | 1.11 | 0.65 | 0.28 | 0.10 | 5.99 | ||
2.14 | 1.98 | 1.80 | 0.59 | 0.67 | 7.45 | ||
3.92 | 4.42 | 4.22 | 1.83 | 2.49 | 9.88 | ||
8.53 | 9.25 | 8.51 | 4.96 | 7.08 | 13.88 | ||
91.47 | 90.75 | 91.49 | 95.04 | 92.92 | 86.12 | ||
82.80 | 82.27 | 83.74 | 88.82 | 85.90 | 78.39 | ||
71.50 | 68.72 | 71.55 | 78.24 | 73.52 | 66.95 | ||
53.43 | 51.63 | 53.12 | 59.09 | 56.21 | 50.65 | ||
28.30 | 26.89 | 27.58 | 33.61 | 32.20 | 26.50 |
Tab. 2 Deviation of NO x mass concentration fluctuation at the main outlet
NO x 质量浓度波动偏差/(mg/m3) | 时间占比/% | ||||||
---|---|---|---|---|---|---|---|
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | ||
0.59 | 1.11 | 0.65 | 0.28 | 0.10 | 5.99 | ||
2.14 | 1.98 | 1.80 | 0.59 | 0.67 | 7.45 | ||
3.92 | 4.42 | 4.22 | 1.83 | 2.49 | 9.88 | ||
8.53 | 9.25 | 8.51 | 4.96 | 7.08 | 13.88 | ||
91.47 | 90.75 | 91.49 | 95.04 | 92.92 | 86.12 | ||
82.80 | 82.27 | 83.74 | 88.82 | 85.90 | 78.39 | ||
71.50 | 68.72 | 71.55 | 78.24 | 73.52 | 66.95 | ||
53.43 | 51.63 | 53.12 | 59.09 | 56.21 | 50.65 | ||
28.30 | 26.89 | 27.58 | 33.61 | 32.20 | 26.50 |
参数 | 装机规模 | ||
---|---|---|---|
1×300 MW | 1×600 MW | 1×1 000 MW | |
烟气量/(106 m3/h) | 1.2 | 2.1 | 3.0 |
年利用小时数/h | 4 500 | 4 500 | 4 500 |
NO x 入口质量浓度/(mg/m3) | 400 | 300 | 250 |
NO x 出口质量浓度/(mg/m3) | 40 | 40 | 40 |
1 h氨耗量/kg | 159.7 | 201.8 | 232.8 |
年氨耗量/t | 718.4 | 908.0 | 1 047.7 |
优化后节氨率/% | 35% | 25% | 15% |
年节省液氨量/t | 251.5 | 227.0 | 157.2 |
液氨单价/(元/t) | 3 300 | 3 300 | 3 300 |
烟风系统降低阻力/Pa | 1 000 | 750 | 750 |
烟风系统降低电耗/kW | 820.1 | 993.6 | 1 318.0 |
综合电价/[元/(kW⋅h)] | 0.3 | 0.3 | 0.3 |
节省液氨费用/(万元/a) | 83.0 | 74.9 | 51.9 |
节省烟风系统电费/(万元/a) | 110.7 | 134.1 | 177.9 |
节省总费用/(万元/a) | 193.7 | 209.0 | 229.8 |
Tab. 3 Economic benefit analysis of typical units
参数 | 装机规模 | ||
---|---|---|---|
1×300 MW | 1×600 MW | 1×1 000 MW | |
烟气量/(106 m3/h) | 1.2 | 2.1 | 3.0 |
年利用小时数/h | 4 500 | 4 500 | 4 500 |
NO x 入口质量浓度/(mg/m3) | 400 | 300 | 250 |
NO x 出口质量浓度/(mg/m3) | 40 | 40 | 40 |
1 h氨耗量/kg | 159.7 | 201.8 | 232.8 |
年氨耗量/t | 718.4 | 908.0 | 1 047.7 |
优化后节氨率/% | 35% | 25% | 15% |
年节省液氨量/t | 251.5 | 227.0 | 157.2 |
液氨单价/(元/t) | 3 300 | 3 300 | 3 300 |
烟风系统降低阻力/Pa | 1 000 | 750 | 750 |
烟风系统降低电耗/kW | 820.1 | 993.6 | 1 318.0 |
综合电价/[元/(kW⋅h)] | 0.3 | 0.3 | 0.3 |
节省液氨费用/(万元/a) | 83.0 | 74.9 | 51.9 |
节省烟风系统电费/(万元/a) | 110.7 | 134.1 | 177.9 |
节省总费用/(万元/a) | 193.7 | 209.0 | 229.8 |
1 | 冯前伟,朱仁涵,徐思达,等 .1 000 MW燃煤机组SCR超低排放关键参数性能评估与分析[J].发电技术,2022,43(1):168-174. doi:10.12096/j.2096-4528.pgt.20030 |
FENG Q W, ZHU R H, XU S D,et al .Performance evaluation and analysis of key parameters of SCR ultra-low emission for 1 000 MW coal-fired unit[J].Power Generation Technology,2022,43(1):168-174. doi:10.12096/j.2096-4528.pgt.20030 | |
2 | 黄友华,马善为,刘吉,等 .燃气轮机烟气SCR脱硝系统优化设计与工程应用[J].发电技术,2021,42(3):350-356. doi:10.12096/j.2096-4528.pgt.21029 |
HUANG Y H, MA S W, LIU J,et al .Optimization design and engineering application of gas turbine SCR denitrification system[J].Power Generation Technology,2021,42(3):350-356. doi:10.12096/j.2096-4528.pgt.21029 | |
3 | 李子尚,朱仁涵,杜振 .SCR脱硝系统精准喷氨优化技术分析[J].发电技术,2021,42(5):630-636. doi:10.12096/j.2096-4528.pgt.20035 |
LI Z S, ZHU R H, DU Z .Analysis on the optimization technology of precise ammonia injection in SCR denitration system[J].Power Generation Technology,2021,42(5):630-636. doi:10.12096/j.2096-4528.pgt.20035 | |
4 | 李峰,姜文堂,史忠军,等 .300 MW燃煤机组SCR烟气脱硝喷氨自动控制策略优化[J].华电技术,2018,40(4):67-69. |
LI F, JIANG W T, SHI Z J,et al .The optimization of automatic control strategy of 300 MW coal fired units SCR flue gas denitrification and ammonia injection[J].Huadian Technology,2018,40(4):67-69. | |
5 | 盛锴,寻新 .基于串级IMC-PID的SCR脱硝控制系统设计及应用[J].热能动力工程,2018,33(12):141-147. |
SHENG K, XUN X .Controller design of SCR control system based on cascade IMC-PID and its application[J].Journal of Engineering for Thermal Energy and Power,2018,33(12):141-147. | |
6 | 郭瑞君,周磊,张国斌,等 .基于SCR入口NO x 浓度和烟气流量预测的脱硝控制系统[J].热能动力工程,2020,35(9):141-147. |
GUO R J, ZHOU L, ZHANG G B,et al .Denitration control system based on scr inlet NO x concentration and flue gas flow prediction[J].Journal of Engineering for Thermal Energy and Power,2020,35(9):141-147. | |
7 | 秦天牧,尤默,张瑾哲,等 .基于自适应智能前馈的SCR脱硝系统优化控制[J].中国电机工程学报,2019,39(S1):186-192. |
QIN T M, YOU M, ZHANG J Z,et al .Optimal control of SCR denitration system based on self-adaptive intelligent feedforward[J].Proceedings of the CSEE,2019,39(S1):186-192. | |
8 | HEJAZI S A, JACKSON K R .Efficient valuation of SCR via a neural network approach[J].Journal of Computational and Applied Mathematics,2017,313:427-439. doi:10.1016/j.cam.2016.10.005 |
9 | TAN P, XIA J, ZHANG C,et al .Modeling and reduction of NO x emissions for a 700 MW coal-fired boiler with the advanced machine learning method[J].Energy,2016,94:672-679. doi:10.1016/j.energy.2015.11.020 |
10 | TUTTLE J F, BLACKBURN L, POWELL K .On-line classification of coal combustion quality using nonlinear SVM for improved neural network NO x emission rate prediction[J].Computers & Chemical Engineering,2020,141:106990. doi:10.1016/j.compchemeng.2020.106990 |
11 | 徐艳春,阚锐涵,高永康,等 .混合动力系统电能质量扰动分析及治理[J].电力建设,2021,42(4):17-26. doi:10.12204/j.issn.1000-7229.2021.04.003 |
XU Y C, KAN R H, GAO Y K,et al .Research on power quality improvement of hybrid power system[J].Electric Power Construction,2021,42(4):17-26. doi:10.12204/j.issn.1000-7229.2021.04.003 | |
12 | 钱虹,张超凡,柴婷婷 .基于随机森林的SCR脱硝系统出口NO x 浓度预测研究[J].热能动力工程,2021(3):122-129. |
QIAN H, ZHANG C F, CAI T T .Research on outlet NO x concentration prediction of SCR denitration system based on random forest algorithm[J].Journal of Engineering for Thermal Energy and Power,2021(3):122-129. | |
13 | 白浩,潘姝慧,邵向潮,等 .基于小波去噪与随机森林的配电网高阻接地故障半监督识别方法[J].电力系统保护与控制,2022,50(20):79-87. |
BAI H, PAN S H, SHAO X C,et al .A high impedance grounding fault semi-supervised identification method based on wavelet denoising and random forest[J].Power System Protection and Control,2022,50(20):79-87. | |
14 | 贾晓静,李刚,武宝会,等 .W型火焰锅炉分区混合动态喷氨控制系统[J].热力发电,2020,49(3):141-147. |
JIA X J, LI G, WU B H,et al .Control system of partitioned hybrid dynamic ammonia injection for W-type flame boiler[J].Thermal Power Generation, 2020,49(3):141-147. | |
15 | 武宝会,李刚,薛大禹,等 .SCR Control+脱硝控制系统研究及其在660 MW机组的应用[J].中国电力,2017,50(11):175-179. |
WU B H, LI G, XUE D Y,et al .Study on SCR Control+ denitrification injection control system and its application in a 660 MW unit[J].Electric Power,2017,50(11):175-179. | |
16 | HARBOLA S, COORS V .One dimensional convolutional neural network architectures for wind prediction[J].Energy Conversion and Management,2019,195:70-75. doi:10.1016/j.enconman.2019.05.007 |
17 | 王红霞,周家奇,辜承昊,等 .用于图像分类的卷积神经网络中激活函数的设计[J].浙江大学学报(工学版),2019,53(7):1363-1373. |
WANG H X, ZHOU J Q, GU C H,et al .Design of activation function in CNN for image classification[J].Journal of Zhejiang University (Engineering Science),2019,53(7):1363-1373. |
[1] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[2] | Hongwei ZHANG, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Study on the Characteristics of Heavy Metal Lead in Desulfurization Sludge Solidified by Coal-Fired Fly Ash in Power Plant [J]. Power Generation Technology, 2024, 45(3): 527-534. |
[3] | Li WANG, Huan ZHANG, Yi YE, Xinglei ZHAO. Formulation Study of N-Aminoethyl Piperazine and Sodium Glycine CO2 Absorbent [J]. Power Generation Technology, 2023, 44(5): 674-684. |
[4] | Zhigang GAO, Fuchun CHEN, Jiawei WANG, Tao WANG, Yongsheng ZHANG. Study on Mercury Emissions and Ash Characteristics of 600 MW Brown Coal-Fired Unit [J]. Power Generation Technology, 2023, 44(4): 543-549. |
[5] | Taozhu YIN, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Preparation of Sulfur-doped Porous Carbon and Its Electro-adsorption Performance for Heavy Metals in Desulfurization Wastewater [J]. Power Generation Technology, 2023, 44(3): 382-391. |
[6] | Pan JI. Study on Removal and Distribution Mechanism of Ammonia in Flue Gas of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(3): 392-398. |
[7] | Hanxiao LIU, Gaofei GUO. Study on Hg Removal Characteristics of Fabric Filter [J]. Power Generation Technology, 2023, 44(2): 193-200. |
[8] | Hanxiao LIU, Gaofei GUO, Zhaomei CHEN. Study on WESP Multi-pollutant Emission Reduction and Energy Efficiency Test of Ultra-low Emission Unit [J]. Power Generation Technology, 2023, 44(1): 94-99. |
[9] | Jingji ZHU, Yishu XU, Jingying XU, Huakun WANG, Xiaowei LIU, Dunxi YU, Jingjing MA, Minghou XU. Effect of Co-firing Ammonia on Coal Volatile Flame Characteristics and Particulate Matter Formation Behaviours [J]. Power Generation Technology, 2022, 43(6): 908-917. |
[10] | Xiaowei YU, Cuijie KUANG. Application and Optimization of Urea Pyrolysis Technology in 1000MW Coal-fired Power Plant [J]. Power Generation Technology, 2022, 43(2): 367-372. |
[11] | Hanxiao LIU, Jianguo LI, Yuping YAO, Ying CUI, Gaofei GUO, Haitao HE, Meiling LIU, Minchao SHEN. Study on SO3 Removal Performance of Low-low Temperature Electrostatic Precipitator System [J]. Power Generation Technology, 2022, 43(1): 147-154. |
[12] | Zishang LI, Renhan ZHU, Zhen DU. Analysis on the Optimization Technology of Precise Ammonia Injection in SCR Denitration System [J]. Power Generation Technology, 2021, 42(5): 630-636. |
[13] | Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station [J]. Power Generation Technology, 2021, 42(4): 464-472. |
[14] | Zhigang HONG,Yang ZHANG,Yongsheng LIU,Yue ZHU. Research Overview on Unconventional Pollutant Detection and Cooperative Control Technology of Flue Gas in Coal-fired Power Plant [J]. Power Generation Technology, 2020, 41(5): 517-526. |
[15] | Xiaoxue AN,Sheng SU,Jun XIANG,Jianxun HUANG,Jizhuang XU,Lele WANG,Yi WANG,Song HU,Zijun YIN,Zhonghui WANG. Hg Formation and Transformation Characteristics in Flue Gas of Coal-fired Boiler [J]. Power Generation Technology, 2020, 41(5): 489-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||