Power Generation Technology ›› 2023, Vol. 44 ›› Issue (3): 417-424.DOI: 10.12096/j.2096-4528.pgt.22125
• Smart Grid • Previous Articles Next Articles
Hao WU, Xiao XU, Zinan PENG, Ninghui GUO, Qifeng WANG
Received:
2022-12-01
Published:
2023-06-30
Online:
2023-06-30
Supported by:
CLC Number:
Hao WU, Xiao XU, Zinan PENG, Ninghui GUO, Qifeng WANG. Research on Electrical Equipment Big Data Mobile Laboratory Based on Power Grid Cloud Data Management and Its Application[J]. Power Generation Technology, 2023, 44(3): 417-424.
采样日期 | 油样成分体积比/(μL/L) | |||||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | C2H4 | C2H6 | C2H2 | 总烃 | |
2019/3/18 | 2.36 | 1 357.75 | 6 410.84 | 24.29 | 12.31 | 4.61 | 0 | 41.31 |
2020/5/11 | 1.94 | 1 543.65 | 6 014.74 | 23.29 | 11.97 | 3.71 | 0 | 38.97 |
2021/3/23 | 1.75 | 1 440.24 | 5 807.93 | 22.61 | 12.42 | 3.84 | 0 | 38.87 |
2021/8/5 | 42.45 | 1 456.65 | 7 047.95 | 36.31 | 33.49 | 5.83 | 40.5 | 116.16 |
Tab. 1 Analysis results of oil sample after differential protection tripping of a transformer
采样日期 | 油样成分体积比/(μL/L) | |||||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | C2H4 | C2H6 | C2H2 | 总烃 | |
2019/3/18 | 2.36 | 1 357.75 | 6 410.84 | 24.29 | 12.31 | 4.61 | 0 | 41.31 |
2020/5/11 | 1.94 | 1 543.65 | 6 014.74 | 23.29 | 11.97 | 3.71 | 0 | 38.97 |
2021/3/23 | 1.75 | 1 440.24 | 5 807.93 | 22.61 | 12.42 | 3.84 | 0 | 38.87 |
2021/8/5 | 42.45 | 1 456.65 | 7 047.95 | 36.31 | 33.49 | 5.83 | 40.5 | 116.16 |
测量位置 | 2021/8/6(故障后) | 1999/10/23(出厂) | △Cx/% | ||
---|---|---|---|---|---|
tanδ/% | Cx /pF | tanδ/% | Cx0 /pF | ||
高压对中、低压及地(CH) | 0.212 | 11 120 | 0.26 | 11 460 | 2.97 |
中压对高、低压及地(CM) | 0.295 | 19 020 | 0.26 | 17 620 | 7.94 |
低压对高、中压及地(CL) | 0.336 | 19 850 | 0.61 | 18 240 | 8.83 |
高、中压对低压及地(CHM) | 0.320 | 14 950 | 0.27 | 8 489 | 76.1 |
高、中、低压对地(CHML) | 0.267 | 15 350 | 0.71 | 15 460 | 0.71 |
Tab. 2 Test results of dielectric loss and capacitance
测量位置 | 2021/8/6(故障后) | 1999/10/23(出厂) | △Cx/% | ||
---|---|---|---|---|---|
tanδ/% | Cx /pF | tanδ/% | Cx0 /pF | ||
高压对中、低压及地(CH) | 0.212 | 11 120 | 0.26 | 11 460 | 2.97 |
中压对高、低压及地(CM) | 0.295 | 19 020 | 0.26 | 17 620 | 7.94 |
低压对高、中压及地(CL) | 0.336 | 19 850 | 0.61 | 18 240 | 8.83 |
高、中压对低压及地(CHM) | 0.320 | 14 950 | 0.27 | 8 489 | 76.1 |
高、中、低压对地(CHML) | 0.267 | 15 350 | 0.71 | 15 460 | 0.71 |
电容量分解值 | 1999/10/23(出厂) | 2021/8/6(故障后) | 变化率/% |
---|---|---|---|
C1/pF | 1 164.5 | 3 525.0 | 202.7 |
C2/pF | 1 690.0 | 1 700.0 | 0.59 |
C3/pF | 12 605.5 | 10 125.0 | -19.7 |
C4/pF | 10 295.5 | 7 595.0 | -26.2 |
C5/pF | 5 634.5 | 9 725.0 | 72.6 |
Tab. 3 Comparison data of measured and factory capacitance decomposition values
电容量分解值 | 1999/10/23(出厂) | 2021/8/6(故障后) | 变化率/% |
---|---|---|---|
C1/pF | 1 164.5 | 3 525.0 | 202.7 |
C2/pF | 1 690.0 | 1 700.0 | 0.59 |
C3/pF | 12 605.5 | 10 125.0 | -19.7 |
C4/pF | 10 295.5 | 7 595.0 | -26.2 |
C5/pF | 5 634.5 | 9 725.0 | 72.6 |
测试位置 | 短路阻抗 | 电流/A | A-B相测试电压/V | B-C相测试电压/V | C-A相测试电压/V | 初始阻抗百分数/% | 实测阻抗百分数/% | 误差/% |
---|---|---|---|---|---|---|---|---|
高压对中压 | 9分接 | 3.59 | 229.61 | 229.56 | 229.61 | 10.10 | 10.42 | 3.17 |
高压对低压 | 9分接 | 2.18 | 229.85 | 230.48 | 230.49 | 18.10 | 17.61 | -2.68 |
中压对低压 | 3分接 | 5.14 | 20.16 | 20.34 | 20.13 | 6.66 | 5.59 | -15.97 |
Tab. 4 Test results of low-voltage short-circuit impedance
测试位置 | 短路阻抗 | 电流/A | A-B相测试电压/V | B-C相测试电压/V | C-A相测试电压/V | 初始阻抗百分数/% | 实测阻抗百分数/% | 误差/% |
---|---|---|---|---|---|---|---|---|
高压对中压 | 9分接 | 3.59 | 229.61 | 229.56 | 229.61 | 10.10 | 10.42 | 3.17 |
高压对低压 | 9分接 | 2.18 | 229.85 | 230.48 | 230.49 | 18.10 | 17.61 | -2.68 |
中压对低压 | 3分接 | 5.14 | 20.16 | 20.34 | 20.13 | 6.66 | 5.59 | -15.97 |
对比数据 | 相关系数 | 频段 | ||
---|---|---|---|---|
低频段 | 中频段 | 高频段 | ||
HOA1-HOB1(1, 2) | 2.953 6 | 2.619 2 | 2.443 5 | |
HOA1-HOC1(1, 3) | 2.132 3 | 2.215 0 | 1.614 7 | |
HOB1-HOC1(2, 3) | 2.193 1 | 2.343 5 | 1.951 7 |
Tab. 5 Correlation coefficient of amplitude-frequency curves of high-voltage winding
对比数据 | 相关系数 | 频段 | ||
---|---|---|---|---|
低频段 | 中频段 | 高频段 | ||
HOA1-HOB1(1, 2) | 2.953 6 | 2.619 2 | 2.443 5 | |
HOA1-HOC1(1, 3) | 2.132 3 | 2.215 0 | 1.614 7 | |
HOB1-HOC1(2, 3) | 2.193 1 | 2.343 5 | 1.951 7 |
对比数据 | 相关系数 | 频段 | ||
---|---|---|---|---|
低频段 | 中频段 | 高频段 | ||
HOA1-HOB1(1, 2) | 1.290 6 | 1.013 4 | 1.698 6 | |
HOA1-HOC1(1, 3) | 0.684 2 | 0.600 1 | ||
HOB1-HOC1(2, 3) | 0.639 4 | 0.691 9 |
Tab. 6 Correlation coefficient of amplitude-frequency curves of medium-voltage winding
对比数据 | 相关系数 | 频段 | ||
---|---|---|---|---|
低频段 | 中频段 | 高频段 | ||
HOA1-HOB1(1, 2) | 1.290 6 | 1.013 4 | 1.698 6 | |
HOA1-HOC1(1, 3) | 0.684 2 | 0.600 1 | ||
HOB1-HOC1(2, 3) | 0.639 4 | 0.691 9 |
对比数据 | 相关系数 | 频段 | ||
---|---|---|---|---|
低频段 | 中频段 | 高频段 | ||
HOA1-HOB1(1, 2) | 0.922 8 | 1.156 5 | ||
HOA1-HOC1(1, 3) | 0.897 6 | 2.079 6 | 1.296 7 | |
HOB1-HOC1(2, 3) | 0.462 0 | 0.751 3 |
Tab. 7 Correlation coefficient of amplitude-frequency curves low-voltage winding
对比数据 | 相关系数 | 频段 | ||
---|---|---|---|---|
低频段 | 中频段 | 高频段 | ||
HOA1-HOB1(1, 2) | 0.922 8 | 1.156 5 | ||
HOA1-HOC1(1, 3) | 0.897 6 | 2.079 6 | 1.296 7 | |
HOB1-HOC1(2, 3) | 0.462 0 | 0.751 3 |
线圈名称 | 测量尺寸/mm | 图纸尺寸/mm | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
A相高压线圈 | 1 016 | 1 018 | 1 020 | 1 017 | 1 019 |
A相中压线圈 | 802 | 803 | 798 | 800 | 800 |
B相高压线圈 | 1 023 | 1 022 | 1 020 | 1 018 | 1 019 |
B相中压线圈 | 802 | 810 | 806 | 795 | 800 |
C相高压线圈 | 1 016 | 1 023 | 1 021 | 1 017 | 1 019 |
Tab. 8 Test results of partial winding diameter after disintegration
线圈名称 | 测量尺寸/mm | 图纸尺寸/mm | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
A相高压线圈 | 1 016 | 1 018 | 1 020 | 1 017 | 1 019 |
A相中压线圈 | 802 | 803 | 798 | 800 | 800 |
B相高压线圈 | 1 023 | 1 022 | 1 020 | 1 018 | 1 019 |
B相中压线圈 | 802 | 810 | 806 | 795 | 800 |
C相高压线圈 | 1 016 | 1 023 | 1 021 | 1 017 | 1 019 |
1 | 周秀,怡恺,李刚,等 .基于邻域粗糙集与AMPOS-ELM的变压器DGA故障诊断[J].电力科学与技术学报,2022,37(3):157-164. |
ZHOU X, YI K, LI G,et al .A transformer DGA fault diagnosis approach based on neighborhood rough set and AMPSO-ELM[J].Journal of Electric Power Science and Technology,2022,37(3):157-164. | |
2 | 张璞,张波,王建,等 .计及主设备时变状态的变电站短时风险评估方法[J].电力系统保护与控制,2021,49(14):73-81. |
ZHANG P, ZHANG B, WANG J,et al .Short-term risk assessment for a power substation considering the time-varying operation conditions of power equipment[J].Power System Protection and Control,2021,49(14):73-81. | |
3 | 陈忠贤,谢虎波,任文军,等 .基于FBG的35 kV油浸式变压器绕组变形监测研究[J].智慧电力,2023,51(1):115-122. |
CHEN Z X, XIE H B, REN W J,et al .35 kV oil immersed transformer winding deformation monitoring based on FBG[J].Smart Power,2023,51(1):115-122. | |
4 | 周楠,王昕,杨海龙 .基于超声合成孔径弧形扫描联合算法的变压器绕组故障检测方法[J].电力科学与技术学报,2022,37(5):198-206. |
ZHOU N, WANG X, YNAG H L .Fault detection method of transformer winding based on combined algorithm of ultrasonic synthetic aperture arc scanning[J].Journal of Electric Power Science and Technology,2022,37(5):198-206. | |
5 | 何文林,郑一鸣 .基于振动检测的变压器绕组机械稳定性评估[J].浙江电力,2022,41(7):57-62. |
HE W L, ZHENG Y M .Evaluation on mechanical stability of transformer windings based on vibration detection[J].Zhejiang Electric Power,2022,41(7):57-62. | |
6 | 邓长生,王庆东 .基于低电压短路阻抗法判断变压器绕组变形的影响因素分析[J].电气工程与自动化,2018(27):1-2. |
DENG C S, WANG Q D .Analysis on influence factors of transformer winding deformation based on low voltage short-circuit impedance method[J].Electrical Engineering and Automation,2018(27):1-2. | |
7 | 周中锋,刘强,刘行行,等 .分布电容法和短路阻抗法在变压器绕组变形综合诊断中的应用[J].河北电力技术,2019,38(2):39-41. doi:10.3969/j.issn.1001-9898.2019.02.012 |
ZHOU Z F, LIU Q, LIU H H,et al .Application of distributed capacitance method and short-circuit impedance method in comprehensive diagnosis of transformer winding deformation[J].Hebei Electric Power Technology,2019,38(2):39-41. doi:10.3969/j.issn.1001-9898.2019.02.012 | |
8 | 严玉婷,江健武,王亚舟,等 .变压器绕组变形测试的理论分析与试验研究[J].高压电器,2010,46(5):55-59. |
YAN Y T, JIANG J W, WANG Y Z,et al .Theoretical analysis and experimental research on transformer winding deformation measurement[J].High Voltage Apparatus,2010,46(5):55-59. | |
9 | 丁学辉,许海林,罗颖婷,等 .基于随机森林特征优选与MAEPSO-ELM算法的变压器DGA故障诊断[J].电力科学与技术学报,2022,37(2):181-187. |
DING X H, XU H L, LUO Y T,et al .Transformer DGA fault diagnosis based on the random forest feature optimization and MAEPSO-ELM algorithm[J].Journal of Electric Power Science and Technology,2022,37(2):181-187. | |
10 | 孟建英,郭红兵,荀华 .110 kV电力变压器绕组辐向变形状况与短路电抗关系分析与应用[J].变压器,2020,57(4):5-7. |
MENG J Y, GUO H B, XUN H .Analysis and application of the relation between 110 kV power transformer winding radial deformation and short-circuit reactance[J].Transformer,2020,57(4):5-7. | |
11 | 国家能源局 . 电力变压器绕组变形的电抗法检测判断导则: [S].北京:中国电力出版社,2018. |
National Energy Administration . Guide for reactance method to detect and diagnose winding deformation of power transformer: [S].Beijing:China Electric Power Publishing House,2018. | |
12 | 邹德旭,钱国超,井永腾,等 .基于漏磁能量法的变压器短路阻抗计算与分析[J].变压器,2019,56(1):13-17. |
ZOU D X, QIAN G C, JING Y T,et al .Calculation and analysis of transformer short-circuit impedance based on magnetic flux leakage energy method[J].Transformer,2019,56(1):13-17. | |
13 | 杨林,连涛,王恒,等 .基于绕组电容量和短路阻抗的变压器绕组变形分析方法[J].四川电力技术,2019,42(6):25-29. |
YANG L, LIAN T, WANG H,et al .Analysis method of transformer winding deformation based on winding capacitance and short-circuit impedance[J].Sichuan Electric Power Technology,2019,42(6):25-29. | |
14 | 赵丹 .基于频响曲线特征的变压器绕组变形诊断方法研究[D].西安:西安理工大学,2020. |
ZHAO D .Research on transformer winding deformation diagnosis method based on frequency response curve[D].Xi’an:Xi’an University of Technology,2020. | |
15 | 刘英环 .电力变压器绕组变形原因分析及测试方法[J].科技创新与应用,2020(26):142-143. |
LIU Y H .Cause analysis and test method for winding deformation of power transformer[J].Scientific and Technological Innovation and Application,2020(26):142-143. | |
16 | DAVAZAI H F .基于扫频频响法的变压器绕组变形检测与诊断方法研究[D].北京:华北电力大学,2021. |
DAVAZAI H F .Research on detection and diagnosis method of transformer winding deformation based on frequency sweep response method[D].Beijing:North China Electric Power University,2021. | |
17 | 国家电网有限公司 .五项通用管理规定[EB/OL].(2018-03-22)[2022-11-01].. |
State Grid Corporation of China .Five general management provisions[EB/OL].(2018-03-22)[2022-11-01].. | |
18 | 黄家丰,张磊,黎大健 .一起电力变压器绕组变形综合分析[J].广西电力,2021,44(3):61-65. doi:10.3969/j.issn.1671-8380.2021.03.012 |
HUANG J F, ZHANG L, LI D J .Comprehensive analysis of a power transformer winding deformation[J].Guangxi Electric Power,2021,44(3):61-65. doi:10.3969/j.issn.1671-8380.2021.03.012 |
[1] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[2] | Lin LIU, Dalong WANG, Xiao QI, Zhenbo ZHOU, Huanxin LIN, Chuanwei CAI. Study on Double Phase-Locked Loop on the Synthetic Inertia Control of Offshore Wind Farm Frequency Regulation [J]. Power Generation Technology, 2024, 45(2): 282-290. |
[3] | Jie YANG, Zhe SUN, Xinyi SU, Gang LU, Bo YUAN. A Wireless Multi-Objective Power Sharing Method for Energy Storage System in DC Micro-Grid Considering Oscillatory-Type Power [J]. Power Generation Technology, 2024, 45(2): 341-352. |
[4] | Hongjun FU, Shaoxuan ZHU, Buhua WANG, Yan XIE, Haoqing XIONG, Xiaojun TANG, Xiaoyong DU, Chenghao LI, Xiaomeng LI. Risk Prediction Method of Low Frequency Oscillation in Maintenance Power Network Based on Long Short Term Memory Neural Network [J]. Power Generation Technology, 2024, 45(2): 353-362. |
[5] | Hongbo LIU, Shencheng LIU, Xueyang GAI, Yongfa LIU, Yutong YAN. Overview of Active Distribution Network Planning With High Proportion of New Energy Access [J]. Power Generation Technology, 2024, 45(1): 151-161. |
[6] | Xiaojie PAN, Youping XU, Zhijun XIE, Yukun WANG, Mujie ZHANG, Mengxuan SHI, Kun MA, Wei HU. Power System Transient Stability Preventive Control Optimization Method Driven by Stacking Ensemble Learning [J]. Power Generation Technology, 2023, 44(6): 865-874. |
[7] | Jun JIA, Weihao FAN, Zhipeng LÜ, Jianguang YAO, Shan ZHOU, Jian WANG, Jintao ZHANG. Research on Startup of DC Transformer for Electric Vehicle Cluster Grid-Connection [J]. Power Generation Technology, 2023, 44(6): 875-882. |
[8] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[9] | Bofei WANG, Haozhe XIAO, Guohao LI, Wenheng XIU, Yunhao MO, Mingjie ZHU, Zhen WU. A Review of Energy Management Strategy for Hydrogen-Electricity Hybrid Power System Based on Control Target [J]. Power Generation Technology, 2023, 44(4): 452-464. |
[10] | Chunyan ZHANG, Zhenlan DOU, Jun WANG, Liangliang ZHU, Xiaotong SUN, Gendi LI. Development Route of Hydrogen Production by Water Electrolysis, Hydrogen Storage and Hydrogen Supply in Power System [J]. Power Generation Technology, 2023, 44(3): 305-317. |
[11] | Jiangwu DU, Xiaoqiang TANG, Zhiwei LUO, Dunnan LIU, Jixu CHEN, Erfeng XU, Sheng BI. Pricing Method for Season of Use in Integrated Energy Park [J]. Power Generation Technology, 2023, 44(2): 261-269. |
[12] | Xin YIN, Feng ZHANG, Balati ADILI, Xiqiang CHANG, Wuhui CHEN, Changjun LI, Xueming LI, Shaowei YUAN. Study on Participation of Electricity-driven Thermal Load in Real-time Scheduling of New Power System [J]. Power Generation Technology, 2023, 44(1): 115-124. |
[13] | Chen DONG, Qiang WU, He HUANG, Rui ZHANG, Xiuyuan YANG. Power Grid Topology Identification Based on Immune Algorithm [J]. Power Generation Technology, 2023, 44(1): 125-135. |
[14] | Qian GAO, Junyi YANG, Yu HONG, Xiaolei SUN, Qianjin ZHU, Tian YU, Xin WANG, Linyuan WANG, Zesen LI. Research on Digital Transformation Architecture and Path of Power Grid Development Planning Business Under New Power System Blueprint [J]. Power Generation Technology, 2022, 43(6): 851-859. |
[15] | Jianlin LI, Ziyang DING, Haitao LIU, Hang YANG. Research on Grid-Forming Energy Storage Converters and Control Strategies [J]. Power Generation Technology, 2022, 43(5): 679-686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||