Power Generation Technology ›› 2023, Vol. 44 ›› Issue (1): 1-17.DOI: 10.12096/j.2096-4528.pgt.22082
• Energy Storage • Next Articles
Jiahui ZHAO, Liting TIAN, Lin CHENG
Received:
2022-04-20
Published:
2023-02-28
Online:
2023-03-02
Supported by:
CLC Number:
Jiahui ZHAO, Liting TIAN, Lin CHENG. Review on State Estimation and Remaining Useful Life Prediction Methods for Lithium-ion Battery[J]. Power Generation Technology, 2023, 44(1): 1-17.
分类 | 描述 | 优点 | 缺点 | ||
---|---|---|---|---|---|
外特性模型 | 等效电路模型 | Rint模型 | 一个理想电压源与一个电阻串联 | 模型简单,参数测定容易 | 无法反映电池动态特性,精度较低,适用范围小 |
Thevenin模型 | n阶Thevenin等效电路模型以Rint模型为基础,串联了n个RC回路表示电池极化现象 | RC回路用于模拟电池动态特性,n越大,精度越高 | 未考虑因负载电流随时间累计导致的开路电压变化以及自放电等问题;n越大,计算量越大 | ||
PNGV模型 | 在1阶Thevenin等效电路模型的基础上增加了电容Cp来描述负载电流随时间累计导致的开路电压变化 | 计算量较低;相比于1阶Thevenin等效电路,模型精度更高 | 不能反映电池自放电问题 | ||
GNL模型 | 集成了上述4种等效电路模型各自的优点,2个RC回路分别表示浓差极化和电化学极化,结构更接近电池内部特性 | 相比于PNGV模型考虑了负载电流随时间累计导致的开路电压变化问题及电池自放电问题;精度更高,适用性更广 | 相比于PNGV模型,计算更复杂,计算量更大 | ||
开路电压-SOC 模型 | 利用开路电压与SOC的关系计算电池端电压 | 计算简单 | 模型部分参数不具有实际物理意义,精确度较低 | ||
内特性模型 | P2D模型 | 将锂离子电池等效为由无数球型固相颗粒组成的电极(正负极)、隔膜及电解液组成的结构 | 精确度高,适用性较广 | 过于复杂,计算量大,且无法获得其解析解 | |
SP模型 | 采用2个球型颗粒分别表示锂离子电池的正极和负极 | 结构简单,计算量小 | 在大倍率充放电条件下,模型假设不成立,计算误差大,适用范围小 | ||
简化P2D模型 | 对P2D模型的PDE进行简化 | 大大降低了P2D模型的计算量;比SP模型更精确,适用性更强 | 无法解决P2D固有问题,难以在线应用 |
Tab. 1 Classification and comparison of models for lithium-ion battery
分类 | 描述 | 优点 | 缺点 | ||
---|---|---|---|---|---|
外特性模型 | 等效电路模型 | Rint模型 | 一个理想电压源与一个电阻串联 | 模型简单,参数测定容易 | 无法反映电池动态特性,精度较低,适用范围小 |
Thevenin模型 | n阶Thevenin等效电路模型以Rint模型为基础,串联了n个RC回路表示电池极化现象 | RC回路用于模拟电池动态特性,n越大,精度越高 | 未考虑因负载电流随时间累计导致的开路电压变化以及自放电等问题;n越大,计算量越大 | ||
PNGV模型 | 在1阶Thevenin等效电路模型的基础上增加了电容Cp来描述负载电流随时间累计导致的开路电压变化 | 计算量较低;相比于1阶Thevenin等效电路,模型精度更高 | 不能反映电池自放电问题 | ||
GNL模型 | 集成了上述4种等效电路模型各自的优点,2个RC回路分别表示浓差极化和电化学极化,结构更接近电池内部特性 | 相比于PNGV模型考虑了负载电流随时间累计导致的开路电压变化问题及电池自放电问题;精度更高,适用性更广 | 相比于PNGV模型,计算更复杂,计算量更大 | ||
开路电压-SOC 模型 | 利用开路电压与SOC的关系计算电池端电压 | 计算简单 | 模型部分参数不具有实际物理意义,精确度较低 | ||
内特性模型 | P2D模型 | 将锂离子电池等效为由无数球型固相颗粒组成的电极(正负极)、隔膜及电解液组成的结构 | 精确度高,适用性较广 | 过于复杂,计算量大,且无法获得其解析解 | |
SP模型 | 采用2个球型颗粒分别表示锂离子电池的正极和负极 | 结构简单,计算量小 | 在大倍率充放电条件下,模型假设不成立,计算误差大,适用范围小 | ||
简化P2D模型 | 对P2D模型的PDE进行简化 | 大大降低了P2D模型的计算量;比SP模型更精确,适用性更强 | 无法解决P2D固有问题,难以在线应用 |
方法 | 分类 | 优点 | 缺点 | |
---|---|---|---|---|
实验法 | 安时积分法 | 不需要考虑电池内部机理,操作简单 | 易产生累积误差,对初值、传感器精度要求高 | |
开路电压法 | 可用于各种电池,操作简单 | 不能在线实时计算SOC | ||
模型法 | 基本模型 | 外特性模型 | 计算简单,实用性强 | 精确度较差 |
内特性模型 | 能反映电池内部特性 | 模型复杂、计算量大 | ||
状态估计方法 | KF法 | 收敛速度快,对噪声的抑制能力强; 对初值敏感度较低 | 系统噪声不确定; 对模型精确度要求较高 | |
PF法 | 鲁棒性强,对模型精确度要求不高 | 容易出现粒子退化; 计算量大 | ||
数据驱动法 | 神经网络法 | 不依赖高精度电池模型 | 容易梯度消失、陷入局部最优; 计算时间长; 容易过拟合,泛化能力差 | |
回归分析法 | 在高维模式识别、非线性回归等问题中能取得较好效果 | 仅适用于规模较小的数据样本 | ||
融合法 | 估算结果的精度与可靠性较高 | 复杂性高,计算量大 |
Tab. 2 Comparison of advantages and disadvantages in common SOC estimation methods for lithium-ion batteries
方法 | 分类 | 优点 | 缺点 | |
---|---|---|---|---|
实验法 | 安时积分法 | 不需要考虑电池内部机理,操作简单 | 易产生累积误差,对初值、传感器精度要求高 | |
开路电压法 | 可用于各种电池,操作简单 | 不能在线实时计算SOC | ||
模型法 | 基本模型 | 外特性模型 | 计算简单,实用性强 | 精确度较差 |
内特性模型 | 能反映电池内部特性 | 模型复杂、计算量大 | ||
状态估计方法 | KF法 | 收敛速度快,对噪声的抑制能力强; 对初值敏感度较低 | 系统噪声不确定; 对模型精确度要求较高 | |
PF法 | 鲁棒性强,对模型精确度要求不高 | 容易出现粒子退化; 计算量大 | ||
数据驱动法 | 神经网络法 | 不依赖高精度电池模型 | 容易梯度消失、陷入局部最优; 计算时间长; 容易过拟合,泛化能力差 | |
回归分析法 | 在高维模式识别、非线性回归等问题中能取得较好效果 | 仅适用于规模较小的数据样本 | ||
融合法 | 估算结果的精度与可靠性较高 | 复杂性高,计算量大 |
方法 | 分类 | 优点 | 缺点 |
---|---|---|---|
模型法 | 经验模型 | 计算简单 | 精度低,不能考虑运行工况、环境的影响 |
半经验模型 | 能反映运行工况、环境的影响 | 工况复杂时不适用;精度低 | |
电化学模型 | 能反映电池内部复杂机理 | 参数过多,计算量大 | |
数据驱动法 | 时序预测法 | 不依赖电池模型 | 易出现过拟合等问题;计算量大; RUL局部变化无法反映 |
间接数据驱动法 | 与电池特性相关,RUL局部变化预测效果佳 | 计算量大 | |
融合法 | 估算结果的精度与可靠性较高 | 复杂性高,计算量大 |
Tab. 3 Comparison of advantages and disadvantages in common RUL prediction methods for lithium-ion batteries
方法 | 分类 | 优点 | 缺点 |
---|---|---|---|
模型法 | 经验模型 | 计算简单 | 精度低,不能考虑运行工况、环境的影响 |
半经验模型 | 能反映运行工况、环境的影响 | 工况复杂时不适用;精度低 | |
电化学模型 | 能反映电池内部复杂机理 | 参数过多,计算量大 | |
数据驱动法 | 时序预测法 | 不依赖电池模型 | 易出现过拟合等问题;计算量大; RUL局部变化无法反映 |
间接数据驱动法 | 与电池特性相关,RUL局部变化预测效果佳 | 计算量大 | |
融合法 | 估算结果的精度与可靠性较高 | 复杂性高,计算量大 |
1 | SARMAH S B, KALITA P, GARG A,et al .A review of state of health estimation of energy storage systems:challenges and possible solutions for futuristic applications of Li-ion battery packs in electric vehicles[J].Journal of Electrochemical Energy Conversion,2019,16(4):040801. doi:10.1115/1.4042987 |
2 | KIM I S .A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J].IEEE Transaction of Power Electronics,2010,25(4):1013-1022. doi:10.1109/tpel.2009.2034966 |
3 | SAHA B, GOEBEL K, CHRISTOPHERSEN J .Comparison of prognostic algorithms for estimating remaining useful life of batterie[J].Transactions of the Institute of Measurement and Control,2009,31(3): 293-308. doi:10.1177/0142331208092030 |
4 | LIAO L, KOTTIG F .Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems,and an application to battery life prediction[J].IEEE Transaction of Reliability,2014,63(1):191-207. doi:10.1109/tr.2014.2299152 |
5 | 王义军,左雪 .锂离子电池荷电状态估算方法及其应用场景综述[J].电力系统自动化,2022,46(14):193-207. |
WANG Y J, ZUO X .State of charge estimation methods and application scenarios of lithium ion batteries[J].Power System Automation,2022,46(14):193-207. | |
6 | 贺林,胡敏康,石琴,等 .一种分阶段锂离子电池荷电状态估计算法[J].电力电子技术,2020,54(2):8-11. |
HE L, HU M K, SHI Q,et al .A staged state of charge estimation algorithm for lithium-ion batteries [J].Power Electronic Technology,2020,54(2):8-11. | |
7 | 武龙星,庞辉,晋佳敏,等 .基于电化学模型的锂离子电池荷电状态估计方法综述[J].电工技术学报,2022,37(7):1703-1725. |
WU L X, PANG H, JIN J M,et al .A review of state of charge estimation methods for lithium ion batteries based on electrochemical models[J].Journal of Electrical Technology,2022,37(7):1703-1725. | |
8 | 巫春玲,胡雯博,孟锦豪,等 .基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J].电工技术学报,2021,36(24):5165-5175. |
WU C L, HU W B, MENG J H,et al .State of charge estimation of lithium ion battery based on maximum correlation entropy extended kalman filter algorithm[J].Journal of Electrical Technology,2021,36(24):5165-5175. | |
9 | 李超然,肖飞,樊亚翔,等 .基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J].电工技术学报,2020,35(9):2051-2062. doi:10.3390/en12091592 |
LI C R, XIAO F, FAN Y X,et al .State of charge estimation of lithium ion battery based on gated cyclic unit neural network and Huber-M estimation robust Kalman filter fusion method[J].Journal of Electrical Technology,2020,35(9):2051-2062. doi:10.3390/en12091592 | |
10 | 王晓辉,郑超,张思义,等 .融合算法在蓄电池 SOC 估算中的研究综述[J].四川电力技术,2021,44(1):43-46. |
WANG X H, ZHENG C, ZHANG S Y,et al .Summary of fusing algorithm research in estimation for state ofcharge of battery[J].Sichuan Electric Power Technology,2021,44(1):43-46. | |
11 | 李哲,卢兰光,欧阳明高 .提高安时积分法估算电池SOC精度的方法比较[J].清华大学学报(自然科学版),2010,50(8):1293-1296. |
LI Z, LU L G, OUYANG M G .Comparison of methods to improve the accuracy of battery SOC estimation by ampere hour integration[J].Journal of Tsinghua University(Science and Technology),2010,50(8):1293-1296. | |
12 | 罗勇,祁朋伟,黄欢,等 .基于容量修正的安时积分SOC估算方法研究[J].汽车工程,2020,42(5):681-687. |
LUO Y, QI P W, HUANG H,et al .Research on estimation method of ampere hour integration SOC based on capacity correction[J].Automotive Engineering,2020,42(5):681-687. | |
13 | 李昆,赵理,赵博阳,等 .基于频繁项统计的流-安时积分SOC估计方法[J].重庆理工大学学报(自然科学版),2022,36(3):19-27. |
LI K, ZHAO L, ZHAO B Y,et al .Stream ampere hour integral SOC estimation method based on frequent item statistics[J].Journal of Chongqing University of Science and Technology(Natural Science),2022,36(3):19-27. | |
14 | 郭宝甫,张鹏,王卫星,等 .基于OCV-SOC曲线簇的磷酸铁锂电池SOC估算研究[J].电源技术,2019,43(7):1125-1128. doi:10.3969/j.issn.1002-087X.2019.07.013 |
GUO B F, ZHANG P, WANG W X,et al .Study on SOC estimation of lithium iron phosphate battery based on OCV-SOC curve cluster[J].Power Technology,2019,43(7):1125-1128. doi:10.3969/j.issn.1002-087X.2019.07.013 | |
15 | 黄凯,郭永芳,李志刚 .动力锂离子电池荷电状态估计综述[J].电源技术,2018,42(9):1398-1401. doi:10.3969/j.issn.1002-087X.2018.09.046 |
HUANG K, GUO Y F, LI Z G .State of charge estimation of power lithium ion batteries[J].Power Technology,2018,42(9):1398-1401. doi:10.3969/j.issn.1002-087X.2018.09.046 | |
16 | BLANKE H, BOHLEN O, BULLER S,et al .Impedance measurements on lead-acid batteries for state-of-charge,state-of-health and cranking capability prognosis in electric and hybrid electric vehicles[J].Journal of Power Sources,2005,144(2):418-425. doi:10.1016/j.jpowsour.2004.10.028 |
17 | ZENATI A, DESPREZ P, RAZIK H,et al .Impedance measurements combined with the fuzzy logic methodology to assess the SOC and SOH of lithium-ion cells[C]//2010 IEEE Vehicle Power and Propulsion Conference(VPPC).Lille,France:IEEE,2010:1-6. doi:10.1109/vppc.2010.5729069 |
18 | 曾求勇,张鑫,范兴明 .电动汽车动力电池荷电状态估计方法探讨[J].电测与仪表,2014,51(24):76-84. doi:10.3969/j.issn.1001-1390.2014.24.015 |
ZENG Q Y, ZHANG X, FAN X M .Discussion on estimation method of SOC of electric vehicle power battery[J].Electrical Measurement and Instrument,2014,51(24):76-84. doi:10.3969/j.issn.1001-1390.2014.24.015 | |
19 | 丁坚勇,王伊宁,胡志坚,等 .基于智能代理分布式管理系统的电动汽车充放电策略[J].智慧电力,2021,49(7):1-8. doi:10.3969/j.issn.1673-7598.2021.07.002 |
DING J Y, WANG Y N, HU Z J,et al .Electric vehicles charging and discharging strategy based on intelligent-agent distributed management system[J].Smart Power,2021,49(7):1-8. doi:10.3969/j.issn.1673-7598.2021.07.002 | |
20 | 李建林,肖珩 .锂离子电池建模现状综述[J].储能科学与技术[J].2022,11(2):697-703. |
LI J L, XIAO Y .Overview of modeling status of lithium ion battery[J].Energy Storage Science and Technology,2022,11(2):697-703. | |
21 | 吴小慧,张兴敢 .锂电池二阶RC等效电路模型参数辨识[J].南京大学学报(自然科学),2020,56(5):754-761. |
WU X H, ZHANG X G .Parameter identification of second order RC equivalent circuit model of lithium battery[J].Journal of Nanjing University,2020,56(5):754-761. | |
22 | PARK J H, KIM H G, NHO E C,et al .Power conditioning system for a grid connected PV power generation using a Quasi-Z-source inverter[J].IEEE Journal of Power Electronics,2010,101:79-84. doi:10.6113/jpe.2010.10.1.079 |
23 | 毛华夫,万国春,汪镭,等 .基于卡尔曼滤波修正算法的电池SOC估算[J].电源技术,2014,38(2):298-302. doi:10.3969/j.issn.1002-087X.2014.02.032 |
MAO H F, WAN G C, WANG L,et al .Estimation of battery SOC based on modified kalman filter algorithm[J]. Power Technology,2014,38(2):298-302. doi:10.3969/j.issn.1002-087X.2014.02.032 | |
24 | 庞辉,郭龙,武龙星,等 .考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J].电工技术学报,2021,36(10):2178-2189. |
PANG H, GUO L, WU L X,et al .Improved bipolarization model of lithium ion battery considering the effect of ambient temperature and its state of charge estimation[J].Journal of Electrical Technology,2021,36(10):2178-2189. | |
25 | 胡小军 .基于无迹卡尔曼滤波的动力锂电池SOC估计与实现[D].长沙:中南大学,2014. |
HU X J .SOC Estimation and implementation of power lithium battery based on traceless Kalman filter[D].Changsha:Central South University,2014. | |
26 | 孙冬,陈息坤 .基于离散滑模观测器的锂电池荷电状态估计[J].中国电机工程学报,2015,35(1):185-191. |
SUN D, CHEN X K .State of charge estimation of lithium battery based on discrete sliding mode observer[J].Chinese Journal of Electrical Engineering,2015,35(1):185-191. | |
27 | 费亚龙,谢长君,汤泽波,等 .基于平方根无迹卡尔曼滤波的锂电池状态估计[J].中国电机工程学报,2017,37(15):4514-4520. |
FEI Y L, XIE C J, TANG Z B,et al .State estimation of lithium battery based on square root unscented Kalman filter[J].Chinese Journal of Electrical Engineering,2017,37(15):4514-4520. | |
28 | 张頔,马彦,柏庆文 .基于自适应卡尔曼滤波的锂离子电池SOC估计[J].汽车技术,2011(8):42-45. doi:10.3969/j.issn.1000-3703.2011.08.011 |
ZHANG D, MA Y, BAI Q W .SOC estimation of lithium ion battery based on adaptive Kalman filter[J].Automotive Technology,2011(8):42-45. doi:10.3969/j.issn.1000-3703.2011.08.011 | |
29 | SCHWUNK S, ARMBRUSTER N, STRAUB S,et al .Particle filter for state of charge and state of health estimation forlithium-iron phosphate batteries[J].Journal of Power Sources,2013,239:705-710. doi:10.1016/j.jpowsour.2012.10.058 |
30 | XIE C, FEI Y, ZENG C,et al .State estimation of vehicle lithium ion battery based on traceless particle filter[J].Journal of Electrical Technology,2018,33(17):3958-3964. |
31 | 陈息坤,孙冬,陈小虎 .锂离子电池建模及其荷电状态鲁棒估计[J].电工技术学报,2015,30(15):141-147. doi:10.3969/j.issn.1000-6753.2015.15.016 |
CHEN X K, SUN D, CHEN X H .Modeling and robust state of charge estimation of lithium ion batteries[J].Journal of Electrical Technology,2015,30(15):141-147. doi:10.3969/j.issn.1000-6753.2015.15.016 | |
32 | LIU C Z, ZHU Q, LI L .A state of charge estimation method based on H-infinity observer for switched systems of lithium-ion nickel-manganese-cobalt batteries[J].IEEE Transactions on Industrial Electronics,2017,64:8128-8137. doi:10.1109/tie.2017.2701766 |
33 | CHEN C, XIONG R, SHEN W .A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation[J].IEEE Transactions on Power Electronics,2018,33(1):332-342. doi:10.1109/tpel.2017.2670081 |
34 | LIU Z, DANG X .A new method for state of charge and capacity estimation of lithium-ion battery based on dual strong tracking adaptive H infinity filter[J].Mathematical Problems in Engineering,2018(1):1-18. doi:10.1155/2018/5218205 |
35 | ZHU Q, LI L, HU X S .H-infinity-based nonlinear observer design for state of charge estimation of lithium-ion battery with polynomial parameters[J].IEEE Transactions on Vehicular Technology,2017,12:10853-10865. doi:10.1109/tvt.2017.2723522 |
36 | ZHENG Y, OUYANG M G, HAN X,et al .Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles[J].Journal of Power Sources,2018,377:161-188. doi:10.1016/j.jpowsour.2017.11.094 |
37 | 洪赢,陈息坤 .一种基于改进离散滑模观测器的锂电池SOC估计方法[J].工业控制计算机,2018,31(8):67-68. doi:10.3969/j.issn.1001-182X.2018.08.029 |
HONG Y, CHEN X K .A method for SOC estimation of lithium battery based on improved discrete sliding mode observer[J].Industrial Control Computer,2018,31(8):67-68. doi:10.3969/j.issn.1001-182X.2018.08.029 | |
38 | 何洪文,熊瑞 .基于滑模观测器的锂离子动力电池荷电状态估计[J].吉林大学学报(工学版),2011,41(3):623-628. |
HE H W, XIONG R .State of charge estimation of lithium ion power battery based on sliding mode observer[J].Journal of Jilin University(Engineering Edition),2011,41(3):623-628. | |
39 | 杜嘉诚 .基于滑模观测器的锂离子电池荷电状态与健康状态估计算法研究[D].哈尔滨:哈尔滨工业大学,2018. |
DU J C .Research on estimation algorithm of state of charge and health of lithium ion battery based on sliding mode observer[D].Harbin :Harbin Institute of Technology,2018. | |
40 | DOYLE M, FULLER T F, NEWMAN J .Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J].Journal of The Electrochemical Society,1993,140(6):1526-1533. doi:10.1149/1.2221597 |
41 | 李治润 .锂离子动力电池电化学模型建模与老化状态识别研究[D].北京:北京理工大学,2018. |
LI Z R .Study on electrochemical modeling and aging state identification of lithium ion power battery[D].Beijing :Beijing University of Technology,2018. | |
42 | AHMED R, SAYED M E, ARASARATNAM I,et al .Reduced-order electrochemical model parameters identification and state of charge estimation for healthy and aged Li-Ion batteries:part Ⅱ:aged battery model and state of charge estimation[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2014,2(3):678-690. doi:10.1109/jestpe.2014.2331062 |
43 | ZOU C, ZHANG L, HU X,et al .A review of fractional-order techniques applied to lithium-ion batteries,lead-acid batteries,and supercapacitors[J].Journal of Power Sources,2018,390:286-296. doi:10.1016/j.jpowsour.2018.04.033 |
44 | HUSSEIN A A .Capacity fade estimation in electric vehicles Li-ion batteries using artificial neural networks[J].IEEE Transactions on Industry Applications,2013,51(3):677-681. |
45 | MOURA S J, ARGOMEDO F B, KLEIN R,et al .Battery state estimation for a single particle model with electrolyte dynamics[J].IEEE Transactions on Control Systems Technology,2017,25(2):453-468. doi:10.1109/tcst.2016.2571663 |
46 | SCHMIDT A P, BITZER M, IMRE Á W,et al .Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell[J].Journal of Power Sources,2010,195(15):5071-5080. doi:10.1016/j.jpowsour.2010.02.029 |
47 | 尹安东,张万兴,赵韩,等 .基于神经网络的磷酸铁锂电池SOC预测研究[J].电子测量与仪器学报,2011,25(5):433-437. doi:10.3724/sp.j.1187.2011.00433 |
YIN A D, ZHANG W X, ZHAO H,et al .Study on SOC prediction of lithium iron phosphate battery based on neural network[J].Journal of Electronic Measurement and Instrumentation,2011,25(5):433-437. doi:10.3724/sp.j.1187.2011.00433 | |
48 | ZAHID T, XU K, LI W M,et al .State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles[J].Energy,2018,162:871-882. doi:10.1016/j.energy.2018.08.071 |
49 | 蔡信,李波,汪宏华,等 .基于神经网络模型的动力电池SOC估计研究[J].机电工程,2015,32(1):128-132. |
CAI X, LI B, WANG H H,et al .Study on SOC estimation of power battery based on neural network model[J].Electromechanical Engineering,2015,32(1):128-132. | |
50 | 徐帅,刘雨辰,周飞 .基于RNN的锂离子电池SOC估算研究进展[J].电源技术,2021,45(2):263-269. doi:10.3969/j.issn.1002-087X.2021.02.029 |
XU S, LIU Y C, ZHOU F .Research progress of SOC estimation of lithium ion battery based on RNN[J].Power Technology,2021,45(2):263-269. doi:10.3969/j.issn.1002-087X.2021.02.029 | |
51 | 明彤彤,赵晶,王晓磊,等 .基于改进LSTM的脉冲大倍率工况下锂电池SOC估计[J].电力系统保护与控制,2021,49(8):144-150. doi:10.19783/j.cnki.pspc.200776 |
MING T T, ZHAO J, WANG X L,et al .SOC estimation of lithium battery under high pulse rate based on improved LSTM[J].Power System Protection and Control,2021,49(8):144-150. doi:10.19783/j.cnki.pspc.200776 | |
52 | XU C Y, SHEN J Z, DU X,et al .An intrusion detection system using a deep neural network with gated recurrent units[J].IEEE Access,2018,6:48697-48707. doi:10.1109/access.2018.2867564 |
53 | 郑永飞,文怀兴,韩昉,等 .基于LSTM神经网络的动力电池SOC估算研究[J].计算机应用与软件,2020,37(3):78-81. doi:10.3969/j.issn.1000-386x.2020.03.014 |
ZHENG Y F, WEN H X, HAN F,et al .Study on SOC estimation of power battery based on LSTM neural network[J].Computer Application and Software,2020,37(3):78-81. doi:10.3969/j.issn.1000-386x.2020.03.014 | |
54 | 李超然,肖飞,樊亚翔,等 .基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J].电工技术学报,2020,35(9):2051-2062. doi:10.3390/en12091592 |
LI C R, XIAO F, FAN Y X,et al .State of charge estimation of lithium ion battery based on gated cyclic unit neural network and Huber-M estimation robust Kalman filter fusion method[J].Journal of Electrical Technology,2020,35(9):2051-2062. doi:10.3390/en12091592 | |
55 | 韩依彤 .基于门控循环单元神经网络的锂离子电池宽温度SOC估计[D].哈尔滨:哈尔滨工业大学,2021. |
HAN Y T .Wide temperature SOC estimation of lithium ion battery based on gated cyclic unit neural network[D].Harbin:Harbin Institute of Technology, 2021. | |
56 | 朱元富,贺文武,李建兴,等 .基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J].储能科学与技术,2021,10(3):1163-1176. |
ZHU Y F, HE W W, LI J X,et al .SOC estimation of lithium battery based on Bi-LSTM/Bi-GRU cyclic neural network[J].Energy Storage Science and Technology,2021,10(3):1163-1176. | |
57 | 骆秀江,张兵,黄细霞,等 .基于SVM的锂电池SOC估算[J].电源技术,2016,40(2):287-290. doi:10.3969/j.issn.1002-087X.2016.02.016 |
LUO X J, ZHANG B, HUANG X X,et al .Estimation of lithium battery SOC based on SVM[J].Power Technology,2016,40(2):287-290. doi:10.3969/j.issn.1002-087X.2016.02.016 | |
58 | 党选举,言理,姜辉,等 .基于在线LS-SVM的动力电池SOC估算方法研究[J].电源技术,2017,41(5):752-756. doi:10.3969/j.issn.1002-087X.2017.05.028 |
DANG X J, YAN L, JIANG H,et al .Research on SOC estimation method of power battery based on online LS-SVM[J].Power Technology,2017,41(5):752-756. doi:10.3969/j.issn.1002-087X.2017.05.028 | |
59 | 鲍颜红,冯长有,任先成,等 .基于支持向量机的在线暂态稳定故障筛选[J].电力系统自动化,2019,43(22):52-58. doi:10.7500/AEPS20190507005 |
PAO Y H, FENG C Y, REN X C,et al .On-line transient stability fault screening based on support vector machine[J].Power System Automation,2019,43(22):52-58. doi:10.7500/AEPS20190507005 | |
60 | 张帅涛,蒋品群,宋树祥,等 .基于注意力机制和CNN-LSTM融合模型的锂电池SOC预测[J/OL].电源学报:1-15[2022-04-15].. |
ZHANG S T, JIANG P Q, SONG S X,et al .SOC prediction of lithium battery based on attention mechanism and CNN-LSTM fusion model[J/OL].Journal of Power Supply:1-15[2022-04-15].. | |
61 | 李荣波,陈勇 .基于AFFDRLS-AHIF 对动力锂离子电池单体SOC估计[J].北京交通大学学报,2020,44(2):129-135. |
LI R B, CHEN Y .SOC estimation of power lithium ion battery based on AFFDRLS-AHIF[J].Journal of Beijing Jiaotong University,2020,44(2):129-135. | |
62 | REMMLINGER J, BUCHHOLZ M, MEILER M,et al .State-of-health monitoring of lithiumion batteries in electric vehicles by on-board internal resistance estimation[J].Journal of Power Sources,2011,196(12):5357-5363. doi:10.1016/j.jpowsour.2010.08.035 |
63 | 桂强,史一炜,周云,等 .考虑储能动态运行特性的充电站光储容量优化配置模型[J].电力建设,2021,42(5):90-99. doi:10.12204/j.issn.1000-7229.2021.05.010 |
GUI Q, SHI Y W, ZHOU Y,et al .Optimal configuration model of photovoltaic and energy storage capacity of charging station considering battery dynamic characteristics[J].Electric Power Construction,2021,42(5):90-99. doi:10.12204/j.issn.1000-7229.2021.05.010 | |
64 | 董明,范文杰,刘王泽宇,等 .基于特征频率阻抗的锂离子电池健康状态评估[J/OL].中国电机工程学报:1-11[2022-04-15].DOI:10.13334/j.0258-8013.pcsee.212036. |
DONG M, FAN W J, LIU W Z Y,et al .State of health assessment of lithium ion battery based on characteristic frequency impedance[J/OL].Chinese Journal of Electrical Engineering:1-11[2022-04-15].DOI:10.13334/j.0258-8013.pcsee.212036. | |
65 | TOPAN P A, RAMADAN M N, FATHONI G,et al .State of charge (SOC) and state of health (SOH) estimation on lithium polymer battery via Kalman filter[C]//2016 2nd International Conference on Science and Technology-Computer (ICST).Yogyakarta,Indonesia:IEEE,2016:93-96. doi:10.1109/icstc.2016.7877354 |
66 | 李沂洹,李慷,余渐 .锂离子电池荷电状态与健康状态估计方法[J].发电技术,2021,42(5):537-546. doi:10.12096/j.2096-4528.pgt.21074 |
LI Y H, LI K, YU J .Estimation approaches for states of charge and health of lithium-ion battery[J].Power Generation Technology,2021,42(5):537-546. doi:10.12096/j.2096-4528.pgt.21074 | |
67 | 高仁璟,吕治强,赵帅,等 .基于电化学模型的锂离子电池健康状态估算[J].北京理工大学学报,2022,42(8):791-797. |
GAO R J, LÜ Z Q, ZHAO S,et al .State of health estimation of lithium ion battery based on electrochemical model[J].Journal of Beijing University of Technology,2022,42(8):791-797. | |
68 | 黄奂奇 .基于电化学热耦合模型的锂离子电池老化状态估计[D].哈尔滨:哈尔滨工业大学,2021. |
HUANG H Q .Aging state estimation of lithium ion battery based on electrochemical thermal coupling model[D].Harbin:Harbin Institute of Technology,2021. | |
69 | LEE J H, LEE I S .Online estimation algorithm of SOC and SOH using neural network for lithium battery[C]//2021 IEEE 3rd Eurasia Conference on IOT,Communication and Engineering(ECICE).Taiwan,China:IEEE,2021:568-571. doi:10.1109/ecice52819.2021.9645632 |
70 | LEE J H, KIM H S, LEE I S .Deep neural network based SOH monitoring of battery module[C]//2019 IEEE Eurasia Conference on IOT,Communication and Engineering (ECICE).Yunlin,China:IEEE,2019:14-16. doi:10.1109/ecice47484.2019.8942728 |
71 | 祝庆伟,俞小莉,吴启超,等 .高能量密度锂离子电池老化半经验模型[J].储能科学与技术,2022,11(7):2324-2331. |
ZHU Q W, YU X L, WU Q C,et al .Semi empirical aging model of high energy density lithium ion battery[J].Energy Storage Science and Technology,2022,11(7):2324-2331. | |
72 | ZHANG Z H .Accelerated life testing and statistical analysis[M].Beijing:Beijing University of Technology Press,2002. |
73 | MAO S S, WANG L L .Accelerated life testing[M].Beijing:Science Press,2000. |
74 | XU B L, OUDALOV A, ULBIG A,et al .Modeling of lithium-ion battery degradation for cell life assessment[J].IEEE Transactions on Smart Grid,2018,9(2):1131-1140. doi:10.1109/tsg.2016.2578950 |
75 | LI Z, LU L G, OUYANG M G,et al .Modeling the capacity degradation of LiFePO4 graphite batteries based on stress coupling analysis[J].Journal of Power Sources,2011,196:9757-9766. doi:10.1016/j.jpowsour.2011.07.080 |
76 | MILLNER A .Modeling lithium ion battery degradation in electric vehicles[C]//2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES).IEEE,2010:349-356. doi:10.1109/citres.2010.5619782 |
77 | DROUILHET S, JOHNSON B L .A battery life prediction method for hybrid power applications[C]//35th Aerospace Sciences Meeting and Exhibit.AIAA,1997:948-956. doi:10.2514/6.1997-948 |
78 | MADELEINE E, JOCHEN B, GERSCHLER J V,et al .Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data[J].Journal of Power Sources,2012, 215:248-257. doi:10.1016/j.jpowsour.2012.05.012 |
79 | WANG D, MIAO Q, PECHT M .Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J].Journal of Power Source,2013,239:253-264. doi:10.1016/j.jpowsour.2013.03.129 |
80 | WANG J, LIU P, HICKS-GARNER J,et al .Cycle-life model for graphite-LiFePO4 cells[J].Journal of Power Source,2010,196(8):3942-3948. doi:10.1016/j.jpowsour.2010.11.134 |
81 | LI Z, LU L G, OUYANG M G,et al .Modeling the capacity degradation of LiFePO4/graphite batteries based on stress coupling analysis[J].Journal of Power Source,2011,196:9757-9766. doi:10.1016/j.jpowsour.2011.07.080 |
82 | XU B, OUDALOV A, ULBIG A,et al .Modeling of lithium-ion battery degradation for cell life assessment[J].IEEE Transactions on Smart Grid,2018,9(2):1131-1140. doi:10.1109/tsg.2016.2578950 |
83 | CHENG L, WAN Y, ZHOU Y,et al .Operational reliability modeling and assessment of battery energy storage based on lithium-ion battery lifetime degradation[J].Journal of Modern Power Systems and Clean Energy,2021,9(3):124-130. |
84 | THOMAS K, NEWMAN J,DA R,et al . Mathematical modeling of lithium batteries[M].New York:Kluwer Academic /Plenum Publishers,2002:345-392. doi:10.1007/0-306-47508-1_13 |
85 | HU J, WANG J .Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression[J].Energy,2015,93:1456-1466. doi:10.1016/j.energy.2015.10.041 |
86 | SAHINOGLU G O, PAJOVIC M, SAHINOGLU Z,et al .Battery state-of-charge estimation based on regular/recurrent gaussian process regression[J].IEEE Transactions on Industrial Electronics,2018,65(5): 4311-4321. doi:10.1109/tie.2017.2764869 |
87 | LONG B, XIAN W, JIANG L,et al .An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries[J].Microelectronics Reliability,2013,53: 821-831. doi:10.1016/j.microrel.2013.01.006 |
88 | ZHOU Y, HUANG M .Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J].Microelectronics Reliability,2016,65:265-273. doi:10.1016/j.microrel.2016.07.151 |
89 | CHAOUI H, IBE-EKEOCHA C C .State of charge and state of health estimation for lithium batteries using recurrent neural networks[J].IEEE Transactions on Vehicular Technology,2017,66(10):8773-8783. doi:10.1109/tvt.2017.2715333 |
90 | WILLIARD N, HE W, OSTERMAN M,et al .Comparative analysis of features for determining state of health in lithium-ion batteries[J].International Journal of Prognostics & Health Management,2013,4(1):1-7. |
91 | MA Q, WANG Y, YANG W,et al .A novel health index for battery RUL degradation modeling and prognostics[C]//2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS).Waltham,MA,USA:IEEE,2019:1077-1081. doi:10.1109/ddcls.2019.8909006 |
92 | JIA J, LIANG J, SHI Y,et al .SOH and RUL prediction of lithium-ion batteries based on gaussian process regression with indirect health indicators[J].Energies,2020,13(2):375-383. doi:10.3390/en13020375 |
93 | REN L, ZHAO L, HONG S,et al .Remaining useful life prediction for lithium-ion battery:a deep learning approach[J].IEEE Access,2018,6:50587-50598. doi:10.1109/access.2018.2858856 |
94 | LIU D T, SONG Y C, LI L,et al .On-line life cycle health assessment for lithium-ion battery in electric vehicles[J].Journal of Cleaner Production,2018,199:1050-1065. doi:10.1016/j.jclepro.2018.06.182 |
95 | 王波,陈东东,张锦霞,等 .基于时空分布映射的大规模电池健康状态研究[J].智慧电力,2022,50(6):85-91. doi:10.3969/j.issn.1673-7598.2022.06.014 |
WANG B, CHEN D D, ZHANG J X,et al .Large-scale battery health state prediction based on spatio-temporal distribution mapping[J].Smart Power,2022,50(6):85-91. doi:10.3969/j.issn.1673-7598.2022.06.014 | |
96 | CHEN L, DING Y H, LIU B H,et al .Remaining useful life prediction of battery using a novel indicator and framework with fractional grey model and unscented particle filter[J].IEEE Transactions on Power Electronics,2020,35(6):5850-5859. doi:10.1109/tpel.2019.2952620 |
97 | GOU B, XU Y, FENG X .State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J].IEEE Transactions on Vehicular Technology,2020,69(10):10854-10867. doi:10.1109/tvt.2020.3014932 |
98 | PENG X, ZHANG C, YU Y,et al .Battery remaining useful life prediction algorithm based on support vector regression and unscented particle filter[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM).Ottawa,Canada:IEEE,2016:386-398. doi:10.1109/icphm.2016.7542844 |
99 | 李荣波,陈勇 .基于 AFFDRLS-AHIF 对动力锂离子电池单体SOC 估计[J].北京交通大学学报,2020,44(2):129-135. |
LI R B, CHEN Y .SOC Estimation of power lithium ion battery based on AFFDRLS-AHIF[J].Journal of Beijing Jiaotong University,2020,44(2):129-135. | |
100 | SHIMANEK L .Battery prognostics[J].Empfasis:a publication of the National Electronics Manufacturing Center of Excellence,2003,12:1-2. |
101 | 许守平,侯朝勇,胡娟,等 .利用信息融合技术的储能锂离子电池组 SOC 估算[J].电网技术,2016,40(6):1724-1729. |
XU S P, HOU C Y, HU J,et al .SOC estimation of energy storage lithium-ion battery pack using information fusion technology[J].Power Grid Technology,2016,40(6):1724-1729. |
[1] | Zexu WANG, Kehan HE, Chen SUN, Kaixuan LI, Xing JU. Research on Battery Thermal Management of Pouch Cell Using a Phase Change Material-Based Thermal Switch [J]. Power Generation Technology, 2022, 43(5): 810-822. |
[2] | Shuaishuai YAN, Yang LU, Wenhui HOU, Kai LIU. Smart Separator Materials of Intrinsic Safe Lithium Battery for Large-scale Electric Energy Storge [J]. Power Generation Technology, 2022, 43(5): 792-800. |
[3] | Ning WANG, Zhiqiang CHEN, Mingyi LIU, Peng ZHANG, Xi CAO, Zeyu LU, Haodong LEI, Chuanzhao CAO, Xiao YAN, Guopeng ZHOU. Health Status Assessment of Lithium-ion Battery Based on Fuzzy Comprehensive Evaluation [J]. Power Generation Technology, 2022, 43(5): 784-791. |
[4] | Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch [J]. Power Generation Technology, 2022, 43(2): 328-340. |
[5] | Yihuan LI, Kang LI, James YU. Estimation Approaches for States of Charge and Health of Lithium-ion Battery [J]. Power Generation Technology, 2021, 42(5): 537-546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||