Power Generation Technology ›› 2022, Vol. 43 ›› Issue (4): 562-573.DOI: 10.12096/j.2096-4528.pgt.22090
• Carbon Capture, Utilization and Storage Technology • Previous Articles Next Articles
Hang YE, Ning HAO, Qi LIU
Received:
2022-05-05
Published:
2022-08-31
Online:
2022-09-06
Supported by:
CLC Number:
Hang YE, Ning HAO, Qi LIU. Review on Key Parameters and Characterization Technology of CO2 Sequestration Mechanism in Saline Aquifers[J]. Power Generation Technology, 2022, 43(4): 562-573.
项目名称 | 状态 | 国家 | 投运时间 | 行业 | 最大捕集能力/(Mt/a) | 捕集类型 | 封存类型 |
---|---|---|---|---|---|---|---|
Sleipner | 运行中 | 挪威 | 1996 | 天然气处理 | 0.40 | 工业分离 | 专用地质封存 |
Snøhvit | 运行中 | 挪威 | 2008 | 天然气处理 | 0.70 | 工业分离 | 专用地质封存 |
Quest | 运行中 | 加拿大 | 2015 | 制氢、油砂升级 | 1.20 | 工业分离 | 专用地质封存 |
Illinois Industrial Carbon Capture and Storage | 运行中 | 美国 | 2017 | 乙醇生产 | 1.00 | 工业分离 | 专用地质封存 |
Gorgon Carbon Dioxide | 运行中 | 澳大利亚 | 2019 | 天然气处理 | 4.00 | 工业分离 | 专用地质封存 |
Qatar LNG CCS | 运行中 | 卡塔尔 | 2019 | 天然气处理 | 1.00 | 工业分离 | 专用地质封存 |
神华CCS | 暂时停注 | 中国 | 2010 | 煤制油 | 0.15 | 工业分离 | 专用地质封存 |
Tab. 1 Cases of CO2 sequestration in saline aquifers at home and abroad
项目名称 | 状态 | 国家 | 投运时间 | 行业 | 最大捕集能力/(Mt/a) | 捕集类型 | 封存类型 |
---|---|---|---|---|---|---|---|
Sleipner | 运行中 | 挪威 | 1996 | 天然气处理 | 0.40 | 工业分离 | 专用地质封存 |
Snøhvit | 运行中 | 挪威 | 2008 | 天然气处理 | 0.70 | 工业分离 | 专用地质封存 |
Quest | 运行中 | 加拿大 | 2015 | 制氢、油砂升级 | 1.20 | 工业分离 | 专用地质封存 |
Illinois Industrial Carbon Capture and Storage | 运行中 | 美国 | 2017 | 乙醇生产 | 1.00 | 工业分离 | 专用地质封存 |
Gorgon Carbon Dioxide | 运行中 | 澳大利亚 | 2019 | 天然气处理 | 4.00 | 工业分离 | 专用地质封存 |
Qatar LNG CCS | 运行中 | 卡塔尔 | 2019 | 天然气处理 | 1.00 | 工业分离 | 专用地质封存 |
神华CCS | 暂时停注 | 中国 | 2010 | 煤制油 | 0.15 | 工业分离 | 专用地质封存 |
封存机理 | 表征方法 |
---|---|
构造封存 | CO2-地层水岩心驱替实验 |
残余气封存 | CO2-地层水岩心驱替实验 |
溶解封存 | CO2-地层水溶解性实验 |
矿化封存 | CO2-地层水-岩石矿化反应实验 |
Tab. 2 Common characterization methods for different storage mechanisms
封存机理 | 表征方法 |
---|---|
构造封存 | CO2-地层水岩心驱替实验 |
残余气封存 | CO2-地层水岩心驱替实验 |
溶解封存 | CO2-地层水溶解性实验 |
矿化封存 | CO2-地层水-岩石矿化反应实验 |
1 | 中国 21 世纪议程管理中心.中国碳捕集、利用与封存技术发展路线图2019[M].北京: 科学出版社, 2019. |
The Administrative Center for China’s Agenda 21.Roadmap for carbon capture, utilization and storage development in China 2019[M].Beijing: China Science Publishing & Media Ltd., 2019. | |
2 | 蔡博峰, 李琦, 张贤,等 .中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R].北京: 生态环境部环境规划院, 2021. |
CAI B F, LI Q, ZHANG X, et al. Annual report on carbon dioxide capture, utilization and storage (CCUS) in China (2021):study on CCUS path in China[R].Beijing: Ministry of Ecological Environment, 2021. | |
3 | 陈昌照, 王万福, 陈宏坤, 等 .二氧化碳咸水层封存的研究现状和问题[J].油气田环境保护, 2013, 23(3): 1-5. doi:10.3969/j.issn.1005-3158.2013.03.001 |
CHEN C Z, WANG W F, CHEN H K, et al .The research status and issues of carbon dioxide sequestration in saline aquifer[J].Environmental Protection of Oil & Gas Fields, 2013, 23(3): 1-5. doi:10.3969/j.issn.1005-3158.2013.03.001 | |
4 | JAYASEKARA D W, RANJITH P G, WANNIARACHCHI W A M, et al .Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: a review study[J].The Journal of Supercritical Fluids, 2020, 161. doi:10.1016/j.supflu.2020.104819 |
5 | DE SILVA G, RANJITH P G, PERERA M .Geochemical aspects of CO2 sequestration in deep saline aquifers: a review[J].Fuel, 2015, 155: 128-143. doi:10.1016/j.fuel.2015.03.045 |
6 | BRAD P .The global status of CCS 2021[M].Australia: The Global CCS Institute, 2021. |
7 | 叶航, 刘琦, 彭勃 .基于二氧化碳驱油技术的碳封存潜力评估研究进展[J].洁净煤技术, 2021, 27(2): 107-116. |
YE H, LIU Q, PENG B .Evaluation of carbon storage potential based on CO2 flooding technology: a review[J].Clean Coal Technology, 2021, 27(2): 107-116. | |
8 | BACHU S, BONIJOLY D, BRADSHAW J, et al .CO2 storage capacity estimation: methodology and gaps[J].International journal of greenhouse gas control, 2007, 1(4): 430-443. doi:10.1016/s1750-5836(07)00086-2 |
9 | GOODMAN A, HAKALA A, BROMHAL G, et al .US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J].International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965. doi:10.1016/j.ijggc.2011.03.010 |
10 | HÖLLER S, VIEBAHN P .Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios[J].Energy Policy, 2016, 89: 64-73. doi:10.1016/j.enpol.2015.10.043 |
11 | BACHU S .Review of CO2 storage efficiency in deep saline aquifers[J].International Journal of Greenhouse Gas Control, 2015, 40: 188-202. doi:10.1016/j.ijggc.2015.01.007 |
12 | AMINU M D, NABAVI S A, ROCHELLE C A, et al .A review of developments in carbon dioxide storage[J].Applied Energy, 2017, 208: 1389-1419. doi:10.1016/j.apenergy.2017.09.015 |
13 | WEI N, LI X, JIAO Z, et al .A hierarchical framework for CO2 storage capacity in deep saline aquifer formations[J].Frontiers in Earth Science, 2022, 9:1-21. doi:10.3389/feart.2021.777323 |
14 | VISHAL V, SINGH T .Geologic carbon sequestration [J].Environ Geosci, 2016, 16:47-133. doi:10.1007/978-3-319-27019-7 |
15 | 李阳 .碳中和与碳捕集利用封存技术进展[M].北京:中国石化出版社, 2021. |
LI Y .Progress in carbon neutralization and carbon capture, utilization and storage technology[M].Beijing: China Petrochemical Press Ltd., 2021. | |
16 | METZ B, DAVIDSON O, DE CONINCK H, et al .IPCC special report on carbon dioxide capture and storage[M].Cambridge: Cambridge University Press, 2005. |
17 | KUMAR S, FOROOZESH J, EDLMANN K, et al .A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers[J].Journal of Natural Gas Science and Engineering, 2020, 81: 103437. doi:10.1016/j.jngse.2020.103437 |
18 | IGLAUER S .Optimum storage depths for structural CO2 trapping[J].International Journal of Greenhouse Gas Control, 2018, 77: 82-87. doi:10.1016/j.ijggc.2018.07.009 |
19 | 李铱, 李旭峰, 沈照理, 等 .CO2地质封存室内实验中盐水种类对残余水形成的影响[J].地学前缘, 2015, 22(4): 312-319. |
LI Y, LI X F, SHEN Z L, et al .The effects of brine species on the formation of residual water in laboratory experiments of CO2 geological storage[J].Earth Science Frontiers, 2015, 22(4): 312-319. | |
20 | NGHIEM L, YANG C, SHRIVASTAVA V, et al .Risk mitigation through the optimization of residual gas and solubility trapping for CO2 storage in saline aquifers[J].Energy Procedia, 2009, 1(1): 3015-3022. doi:10.1016/j.egypro.2009.02.079 |
21 | 李海燕, 彭仕宓, 许明阳, 等 .CO2在深部咸水层中的埋存机制研究进展[J].科技导报, 2013, 31(2): 72-79. |
LI H Y, PENG S M, XU M Y, et al .CO2 storage mechanism in deep saline aquifers[J].Science & Technology Review, 2013, 31(2): 72-79. | |
22 | 武爱兵, 李铱, 常春, 等 .不同成分盐水驱CO2的残余气饱和度[J].现代地质, 2014, 28(5): 1061-1067. doi:10.3969/j.issn.1000-8527.2014.05.023 |
WU A B, LI Y, CHANG C, et al .The residual gas saturation of different components of saline flooding CO2 [J].Geoscience, 2013, 31(2): 72-79. doi:10.3969/j.issn.1000-8527.2014.05.023 | |
23 | BACHU S .CO2 storage in geological media: role, means, status and barriers to deployment[J].Progress in energy and combustion science, 2008, 34(2): 254-273. doi:10.1016/j.pecs.2007.10.001 |
24 | KUMAR A, NOH M, SEPEHRNOORI K, et al .Carbon dioxide dapture for storage in deep geologic formations-results from the CO2 capture project[M].Amsterdam: Elsevier Science, 2005. doi:10.1016/b978-008044570-0/50140-9 |
25 | DE SILVA P N K, RANJITH P .A study of methodologies for CO2 storage capacity estimation of saline aquifers[J].Fuel, 2012, 93: 13-27. doi:10.1016/j.fuel.2011.07.004 |
26 | SUEKANE T, NOBUSO T, HIRAI S, et al .Geological storage of carbon dioxide by residual gas and solubility trapping[J].International Journal of Greenhouse Gas Control, 2008, 2(1): 58-64. doi:10.1016/s1750-5836(07)00096-5 |
27 | BENSON S M, COLE D R .CO2 sequestration in deep sedimentary formations[J].Elements, 2008, 4(5): 325-331. doi:10.2113/gselements.4.5.325 |
28 | MENG Q, JIANG X .Numerical analyses of the solubility trapping of CO2 storage in geological formations[J].Applied energy, 2014, 130: 581-591. doi:10.1016/j.apenergy.2014.01.037 |
29 | GARCIA S, LIU Q, BACON D H, et al .An investigation of reaction parameters on geochemical storage of non-pure CO2 streams in iron oxide-bearing formations[J].Fuel processing technology, 2014, 128: 402-411. doi:10.1016/j.fuproc.2014.07.027 |
30 | LIU Q, MAROTO-VALER M M. Studies of pH buffer systems to promote carbonate formation for CO2 sequestration in brines[J].Fuel Processing Technology, 2012, 98: 6-13. doi:10.1016/j.fuproc.2012.01.023 |
31 | LIU Q, MAROTO-VALER M M .Investigation of the pH effect of a typical host rock and buffer solution on CO2 sequestration in synthetic brines[J].Fuel Processing Technology, 2010, 91(10): 1321-1329. doi:10.1016/j.fuproc.2010.05.002 |
32 | WANG D, DONG B, BREEN S, et al .Approaches to research on CO2/brine two-phase migration in saline aquifers[J].Hydrogeology Journal, 2015, 23(1): 1-18. doi:10.1007/s10040-014-1186-1 |
33 | MURUGESU M P, PRASAD M, PYLYPENKO S .Surface and bulk characterization of reservoir and cap-rocks: Past, present, and future[J].Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020, 38(5): 050801. doi:10.1116/6.0000319 |
34 | 甘满光, 缪秀秀, 张力为, 等 .CT扫描技术在二氧化碳地质利用与封存领域的应用研究综述[J].水利水电技术, 2019, 50(8): 174-184. doi:10.1130/abs/2019am-333827 |
GAN M G, MIAO X X, ZHANG L W, et al .Review on applications of CT scanning technique in the field of CO2 geological utilization and storage[J].Water Resources and Hydropower Engineering,2019,50(8): 174-184. doi:10.1130/abs/2019am-333827 | |
35 | SUN Y, LI Q, YANG D, et al .Laboratory core flooding experimental systems for CO2 geosequestration: an updated review over the past decade[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(1): 113-126. doi:10.1016/j.jrmge.2015.12.001 |
36 | SPYCHER N, PRUESS K .CO2-H2O mixtures in the geological sequestration of CO2.Ⅱ.partitioning in chloride brines at 12-100 ℃ and up to 600 bar[J].Geochimica et Cosmochimica Acta, 2005, 69(13): 3309-3320. doi:10.1016/j.gca.2005.01.015 |
37 | DE SILVA P N K, RANJITH P .Advanced core flooding apparatus to estimate permeability and storage dynamics of CO2 in large coal specimens[J].Fuel, 2013, 104: 417-425. doi:10.1016/j.fuel.2012.09.012 |
38 | EDLMANN K, HASZELDINE S, MCDERMOTT C .Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow[J].Environmental earth sciences, 2013, 70(7): 3393-3409. doi:10.1007/s12665-013-2407-y |
39 | AKBARABADI M, PIRI M .Co-sequestration of SO2 with supercritical CO2 in carbonates: an experimental study of capillary trapping, relative permeability, and capillary pressure[J].Advances in Water Resources, 2015, 77: 44-56. doi:10.1016/j.advwatres.2014.08.011 |
40 | MENKE H P, BIJELJIC B, ANDREW M G, et al .Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions[J].Environmental Science & Technology, 2015, 49(7): 4407-4414. doi:10.1021/es505789f |
41 | MA J, PETRILLI D, MANCEAU J C, et al .Core scale modelling of CO2 flowing: identifying key parameters and experiment fitting[J].Energy Procedia, 2013, 37: 5464-5472. doi:10.1016/j.egypro.2013.06.466 |
42 | ZHANG Y, KOGURE T, CHIYONOBU S, et al .Influence of heterogeneity on relative permeability for CO2/brine: CT observations and numerical modeling[J].Energy Procedia, 2013, 37: 4647-4654. doi:10.1016/j.egypro.2013.07.241 |
43 | IGLAUER S .Dissolution trapping of carbon dioxide in reservoir formation brine-a carbon storage mechanism[M].INTECH Open Access Publisher, 2011. doi:10.2174/978160805228811201010135 |
44 | 王军良, 李桂璇, 周义明, 等 .二氧化碳在油气田地质封存中溶解物性的研究进展[J].油田化学, 2018, 35(3): 550-561. |
WANG J L, LI G X, ZHOU Y M, et al .Review on dissolved physical properties of carbon dioxide in geological storage of oil and gas fields[J].Oilfield Chemistry, 2018, 35(3): 550-561. | |
45 | REZK M G, FOROOZESH J, ABDULRAHMAN A, et al .CO2 Diffusion and Dispersion in Porous Media: Review of Advances in Experimental Measurements and Mathematical Models[J].Energy & Fuels, 2021,36(1): 133-155. doi:10.1021/acs.energyfuels.1c03552 |
46 | RIMMELE G, BARLET-GOUEDARD V, RENARD F .Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geological storage at 3 km depth[J].Oil & Gas Science and Technology-Revue de l’Institut Français du Pétrole, 2010, 65(4): 565-580. doi:10.2516/ogst/2009071 |
47 | 索瑞厅, 李旭峰, 高鹏宇, 等 .温度压力对岩心尺度CO2-水-岩系统中残余水影响的实验研究[J].中国电机工程学报, 2021, 41(11): 3711-3722. |
SUO R T, LI X F, GAO P Y, et al..Experimental study on the effects of temperature and pressure on residual water in the CO2-H2O-rock system of core-scale[J].Proceedings of the CSEE, 2021, 41(11): 3711-3722. | |
48 | LI Y, RANJITH P, PERERA M, et al .Residual water formation during the CO2 storage process in deep saline aquifers and factors influencing it: a review[J].Journal of CO2 Utilization, 2017, 20: 253-262. doi:10.1016/j.jcou.2017.05.022 |
49 | IGLAUER S, MATHEW M, BRESME F .Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration[J].Journal of Colloid and Interface Science, 2012, 386(1): 405-414. doi:10.1016/j.jcis.2012.06.052 |
50 | SARAJI S, PIRI M, GOUAL L .The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems[J].International Journal of Greenhouse Gas Control, 2014, 28: 147-155. doi:10.1016/j.ijggc.2014.06.024 |
51 | LI Y, WU A, ZHANG C, et al .The effects of quartz content on the formation of residual water in a brine-CO2-quartz system: an experimental study[J].Journal of Natural Gas Science and Engineering, 2015, 27: 1609-1619. doi:10.1016/j.jngse.2015.10.027 |
52 | REYNOLDS C, BLUNT M, KREVOR S .Impact of reservoir conditions on CO2-brine relative permeability in sandstones[J].Energy Procedia, 2014, 63: 5577-5585. doi:10.1016/j.egypro.2014.11.591 |
53 | BACHU S .Drainage and imbibition CO2/brine relative permeability curves at in situ conditions for sandstone formations in western Canada[J].Energy Procedia, 2013, 37: 4428-4436. doi:10.1016/j.egypro.2013.07.001 |
54 | SZULCZEWSKI M, MACMINN C, JUANES R .Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers[J].International Journal of Greenhouse Gas Control, 2014, 23: 113-118. doi:10.1016/j.ijggc.2014.02.006 |
55 | 罗强, 孙雷, 李士伦, 等 .水驱气藏残余气饱和度研究综述[J].内蒙古石油化工, 2016, 42(10): 134-139. doi:10.3969/j.issn.1006-7981.2016.10.049 |
LUO Q, SUN L, LI S L, et al .Review on residual gas saturation in water-flooding gas reservoir[J].Inner Mongolia Petrochemical Industry, 2016, 42(10): 134-139. doi:10.3969/j.issn.1006-7981.2016.10.049 | |
56 | ZAPATA Y, KRISTENSEN M R, HUERTA N, et al .CO2 geological storage: critical insights on plume dynamics and storage efficiency during long-term injection and post-injection periods[J].Journal of Natural Gas Science and Engineering,2020,83:103542. doi:10.1016/j.jngse.2020.103542 |
57 | ALI M, ARIF M, SAHITO M F, et al .CO2-wettability of sandstones exposed to traces of organic acids: implications for CO2 geo-storage[J].International Journal of Greenhouse Gas Control, 2019, 83: 61-8. doi:10.1016/j.ijggc.2019.02.002 |
58 | ZHAO C, SONG Y, CHEN M, et al .Micro/nanoscale heat and mass transfer[C]// ASME 2019 6th International Conference, 2019. doi:10.1115/mnhmt2019-4256 |
59 | RASMUSSON K, RASMUSSON M, TATOMIR A, et al .Exploring residual CO2 trapping in Heletz sandstone using pore-network modeling and a realistic pore-space topology obtained from a micro-CT scan[J].Greenhouse Gases: Science and Technology, 2021, 11(5): 907-923. doi:10.1002/ghg.2100 |
60 | RASMUSSON K, RASMUSSON M, TSANG Y, et al .Residual trapping of carbon dioxide during geological storage:insight gained through a pore-network modeling approach[J].International Journal of Greenhouse Gas Control, 2018, 74: 62-78. doi:10.1016/j.ijggc.2018.04.021 |
61 | XU L, LI Q, MYERS M, et al .Migration of carbon dioxide in sandstone under various pressure/temperature conditions: from experiment to simulation[J].Greenhouse Gases: Science and Technology,2022, 12(2): 233-248. doi:10.1002/ghg.2140 |
62 | KAMAL M S, ADEBAYO A R, FOGANG L T, et al .Improving gas sequestration by surfactant-alternating- gas injection: a comparative evaluation of the surfactant type and concentration[J].Journal of Surfactants and Detergents, 2018, 21(5): 667-675. doi:10.1002/jsde.12162 |
63 | BAKHSHIAN S .Dynamics of dissolution trapping in geological carbon storage[J].International Journal of Greenhouse Gas Control, 2021, 112: 103520. doi:10.1016/j.ijggc.2021.103520 |
64 | WAN Y, DU S, LIN G, et al .Dissolution sequestration mechanism of CO2 at the Shiqianfeng saline aquifer in the Ordos Basin, northwestern China[J].Arabian Journal of Geosciences, 2017, 10(3): 1-13. doi:10.1007/s12517-017-2858-7 |
65 | RAAD S M J, HASSANZADEH H .Does impure CO2 impede or accelerate the onset of convective mixing in geological storage?[J].International Journal of Greenhouse Gas Control, 2016, 54: 250-257. doi:10.1016/j.ijggc.2016.09.011 |
66 | RAAD S M J, HASSANZADEH H .Prospect for storage of impure carbon dioxide streams in deep saline aquifers:a convective dissolution perspective[J].International Journal of Greenhouse Gas Control, 2017, 63: 350-355. doi:10.1016/j.ijggc.2017.06.011 |
67 | HAN W S, KIM K Y, ESSER R P, et al .Sensitivity study of simulation parameters controlling CO2 trapping mechanisms in saline formations[J].Transport in Porous Media, 2011, 90(3): 807-829. doi:10.1007/s11242-011-9817-7 |
68 | 胡丽莎, 常春, 于青春 .鄂尔多斯盆地山西组地下咸水CO2溶解能力[J].地球科学(中国地质大学学报), 2012, 37(2): 301-306. |
HU L S, CHANG C, YU Q C .CO2 solubility in Shanxi formation water of ordos basin[J].Earth Science, 2012, 37(2): 301-306. | |
69 | 王璐, 于青春 .地下咸水中Ca2+和Mg2+对CO2溶解度的影响[J].水文地质工程地质, 2015, 42(5): 22-28. |
WANG L, YU Q C .The effect of Ca2+ and Mg2+ on the solubility of CO2 in the formation brines[J].Hydrogeology & Engineering Geology, 2015, 42(5): 22-28. | |
70 | REZK M G, FOROOZESH J .Study of convective- diffusive flow during CO2 sequestration in fractured heterogeneous saline aquifers[J].Journal of Natural Gas Science and Engineering, 2019, 69: 102926. doi:10.1016/j.jngse.2019.102926 |
71 | MIRI R, HELLEVANG H .Salt precipitation during CO2 storage:a review[J].International Journal of Greenhouse Gas Control, 2016, 51: 136-147. doi:10.1016/j.ijggc.2016.05.015 |
72 | GRUDE S, DVORKIN J, CLARK A .Pressure effects caused by CO2 injection in the snøhvit field[J].First Break, 2013,31(12):99. doi:10.3997/1365-2397.31.12.72203 |
73 | ANDRE L, PEYSSON Y, AZAROUAL M .Well injectivity during CO2 storage operations in deep saline aquifers-Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces[J].International Journal of Greenhouse Gas Control, 2014, 22: 301-312. doi:10.1016/j.ijggc.2013.10.030 |
74 | EDEM D E, ABBA M K, NOURIAN A, et al .Experimental study on the interplay between different brine types/concentrations and CO2 injectivity for effective CO2 storage in deep saline aquifers[J].Sustainability, 2022, 14(2): 986. doi:10.3390/su14020986 |
75 | YUSOF M A M, NEUYAM Y A S, IBRAHIM M A, et al .Experimental study of CO2 injectivity impairment in sandstone due to salt precipitation and fines migration[J].Journal of Petroleum Exploration and Production Technology, 2022: 1-12. doi:10.1007/s13202-022-01453-w |
76 | 高志豪, 赵锐锐, 成建梅 .砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟:以鄂尔多斯盆地为例[J].地质科技通报, 2022, 41(1): 269-277. |
GAO Z H, ZHAO R R, CHENG J M .Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: a case study of ordos basin[J].Bulletin of Geological Science and Technology, 2022, 41(1): 269-277. |
[1] | Yucheng LIU, Yuan YANG, Yuhao HU, Yuhang LI, Zitai ZHAO, Zhiyong MA, Yuliang DONG. Risk Assessment of Hydrogen Production Station Equipment Based on Event Tree Cascading Fault Deduction and Evidential Reasoning [J]. Power Generation Technology, 2024, 45(1): 42-50. |
[2] | Zhihua CHEN, Mengkai YOU, Wei CAI, Jingwei HU, Xing HU, Aifang ZHANG, Kejie ZHANG, Wei WANG. Comprehensive Evaluation Model of Energy Storage Power Station With Full Life Cycle [J]. Power Generation Technology, 2023, 44(6): 883-888. |
[3] | Ning WANG, Zhiqiang CHEN, Mingyi LIU, Peng ZHANG, Xi CAO, Zeyu LU, Haodong LEI, Chuanzhao CAO, Xiao YAN, Guopeng ZHOU. Health Status Assessment of Lithium-ion Battery Based on Fuzzy Comprehensive Evaluation [J]. Power Generation Technology, 2022, 43(5): 784-791. |
[4] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
[5] | Yiming HAN, Pengfei XU, Jianfeng GONG, Yaru SHEN. Research on Comprehensive Evaluation System of Power Grid Development and Operation Based on User Demand [J]. Power Generation Technology, 2022, 43(4): 636-644. |
[6] | Yakun HUANG, Jinyi LIU, Xiaosong ZHANG. Configuration Optimization of Off-Grid Energy System Based on HT-PEMFC and VRFB [J]. Power Generation Technology, 2022, 43(2): 305-312. |
[7] | Xiaoguang CHEN, Xiuyuan YANG, Siqi BU, Zhiqiang XU. Capacity Allocation of Wind Farm Energy Storage System Considering Economic Function [J]. Power Generation Technology, 2022, 43(2): 341-352. |
[8] | Qianwei FENG, Renhan ZHU, Sida XU, Bo LIU, Yang ZHANG, Fengji WANG, Yue ZHU. Performance Evaluation and Analysis of Key Parameters of SCR Ultra-low Emission for 1 000 MW Coal-fired Unit [J]. Power Generation Technology, 2022, 43(1): 168-174. |
[9] | Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine [J]. Power Generation Technology, 2022, 43(1): 139-146. |
[10] | Xuedong WANG, Mingchao JIANG, Ang SONG. Performance Evaluation Test of Low-Pressure Economizer and Corrected Calculation Method of Energy Saving Effect [J]. Power Generation Technology, 2021, 42(2): 280-287. |
[11] | Rangda DUAN. A Post-evaluation Index System of Active Distribution Network Project and Its Comprehensive Evaluation Method [J]. Power Generation Technology, 2021, 42(1): 86-93. |
[12] | Xin GAO, Fei TANG, Tongyan ZHANG, Yu LI. Optimal Decision-making Method of Wind-proof and Disaster-resistant Reinforcement Measures for Distribution Network [J]. Power Generation Technology, 2021, 42(1): 78-85. |
[13] | Zhipeng SHEN, Hui XIONG, Jiebei ZHU, Chong SHAO, Honglei XU, Wei QIU. Modelling and Analysis on Evaluation Factor Sets Affecting the Safe and High-efficiency Operation of UHVDC Transmission Project [J]. Power Generation Technology, 2021, 42(1): 48-59. |
[14] | Lei ZHOU, Ju ZHANG, Ziyuan SONG, Zhiping YANG, Peihu GUO, Haiping XIAO, Chen ZHANG, Jianlong LI. Application and Energy-saving Analysis of Built-in Array Acoustic Sootblower [J]. Power Generation Technology, 2020, 41(6): 706-714. |
[15] | Dunnan LIU,Tingting ZHANG,Hua LI,Caijuan QI,Yanxia MA,Weiqi ZHANG,Xiaofeng XU. Integrated Energy System Planning Model for Ubiquitous Power Internet of Things [J]. Power Generation Technology, 2020, 41(1): 50-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||