Power Generation Technology ›› 2021, Vol. 42 ›› Issue (3): 389-394.DOI: 10.12096/j.2096-4528.pgt.18246
• Power Generation and Enviromental Protection • Previous Articles
Changsheng ZONG(), Qingzhong GAO(
), Yutong HE(
), Bai YANG(
)
Received:
2020-03-20
Published:
2021-06-30
Online:
2021-06-29
Contact:
Qingzhong GAO
Supported by:
参数 | 数值 | ||
轴向参数 | 铜盘外径/mm | 210 | |
铜盘厚度/mm | 8 | ||
永磁钢盘外径/mm | 220 | ||
永磁钢盘内径/mm | 90 | ||
永磁钢盘厚度/mm | 10 | ||
磁钢外径/mm | 200 | ||
磁钢内径/mm | 110 | ||
磁钢厚度/mm | 20 | ||
磁钢数量 | 6 | ||
轴向参数 | 铜环外径/mm | 240 | |
铜环内径/mm | 224 | ||
铜环厚度/mm | 8 | ||
铜环轴向长度/mm | 35 | ||
永磁钢环外径/mm | 188 | ||
永磁钢环厚度/mm | 15 | ||
磁钢环外径/mm | 218 | ||
磁钢环内径/mm | 188 | ||
磁钢环厚度/mm | 15 | ||
磁钢数量 | 12 |
Tab. 1 Rotor parameters of hybrid permanent magnet governor
参数 | 数值 | ||
轴向参数 | 铜盘外径/mm | 210 | |
铜盘厚度/mm | 8 | ||
永磁钢盘外径/mm | 220 | ||
永磁钢盘内径/mm | 90 | ||
永磁钢盘厚度/mm | 10 | ||
磁钢外径/mm | 200 | ||
磁钢内径/mm | 110 | ||
磁钢厚度/mm | 20 | ||
磁钢数量 | 6 | ||
轴向参数 | 铜环外径/mm | 240 | |
铜环内径/mm | 224 | ||
铜环厚度/mm | 8 | ||
铜环轴向长度/mm | 35 | ||
永磁钢环外径/mm | 188 | ||
永磁钢环厚度/mm | 15 | ||
磁钢环外径/mm | 218 | ||
磁钢环内径/mm | 188 | ||
磁钢环厚度/mm | 15 | ||
磁钢数量 | 12 |
铜环/mm | 铜盘/mm | x方向系数 | s方向系数 | z方向系数 |
8 | 8 | 3.127 6×10-9 | 1.401 2×10-7 | 3.705 7×10-8 |
10 | 10 | 3.879 6×10-9 | 3.190 2×10-7 | 1.742 9×10-6 |
12 | 12 | 4.256 3×10-9 | 0.475 28 | 0.001 1×10-4 |
12 | 8 | 8.784 9×10-9 | 0.443 48 | 9.5 318×10-2 |
8 | 12 | 3.893 5×10-9 | 2.683 1×10-8 | 3.986 6×10-7 |
10 | 8 | 2.601 2×10-9 | 8.744×10-7 | 8.253 5×10-8 |
8 | 10 | 3.348 5×10-8 | 2.672 4×10-7 | 1.090 8×10-8 |
10 | 12 | 4.069 7×10-9 | 4.846 3×10-7 | 5.545 5×10-6 |
12 | 10 | 5.177 5×10-9 | 0.284 78 | 0.021 563 |
Tab. 2 Vibration mass participation coefficient of a conductor rotor with different thickness at the same speed
铜环/mm | 铜盘/mm | x方向系数 | s方向系数 | z方向系数 |
8 | 8 | 3.127 6×10-9 | 1.401 2×10-7 | 3.705 7×10-8 |
10 | 10 | 3.879 6×10-9 | 3.190 2×10-7 | 1.742 9×10-6 |
12 | 12 | 4.256 3×10-9 | 0.475 28 | 0.001 1×10-4 |
12 | 8 | 8.784 9×10-9 | 0.443 48 | 9.5 318×10-2 |
8 | 12 | 3.893 5×10-9 | 2.683 1×10-8 | 3.986 6×10-7 |
10 | 8 | 2.601 2×10-9 | 8.744×10-7 | 8.253 5×10-8 |
8 | 10 | 3.348 5×10-8 | 2.672 4×10-7 | 1.090 8×10-8 |
10 | 12 | 4.069 7×10-9 | 4.846 3×10-7 | 5.545 5×10-6 |
12 | 10 | 5.177 5×10-9 | 0.284 78 | 0.021 563 |
1 | 王旭. 永磁调速器磁路设计与建模分析技术的研究[D]. 沈阳: 东北大学, 2013. |
WANG X. Study on the design and modeling of the magnetic circuit of permanent magnet governor[D]. Shenyang: Northeastern University, 2013. | |
2 | 张宏刚. 永磁磁力锅合器损耗的计算与分析[D]. 长春: 吉林大学, 2008. |
ZHANG H G. Calculation and analysis of loss of permanent magnet magnetic pot joint[D]. Changchun: Jilin University, 2008. | |
3 |
杨超君, 芦玉根, 李志宝, 等. 深槽鼠笼异步磁力联轴器瞬态气隙磁场有限元分析[J]. 江苏大学学报(自然科学版), 2012, 33 (2): 193- 198.
DOI |
YANG C J , LU Y G , LI Z B , et al. Finite element analysis of transient air gap magnetic field for deep bar squirrel cage asynchronous magnetic coupling[J]. Journal of Jiangsu University (Natural Science Edition), 2012, 33 (2): 193- 198.
DOI |
|
4 | 杨超君, 周曰华, 王晶晶. 双层实心异步磁力联轴器的涡流和传动特性分析[J]. 农业工程学报, 2013, 29 (4): 55- 62. |
YANG C J , ZHOU Y H , WANG J J . Analysis of the eddy current and transmission characteristics in asynchronous magnetic coupling with double-layer solid rotor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (4): 55- 62. | |
5 |
李桃, 林鹤云, 黄允凯, 等. 基于三维运动涡流场分析的永磁涡流联轴器特性[J]. 东南大学学报(自然科学版), 2010, 40 (2): 301- 305.
DOI |
LI T , LIN H Y , HUANG Y K , et al. Characteristics study of permanent magnet eddy current coupling based on 3D moving eddy current field analysis[J]. Journal of Southeast University (Natural Science Edition), 2010, 40 (2): 301- 305.
DOI |
|
6 |
刘岩, 高庆忠, 王森, 等. 新型混合式高效永磁调速器温度场仿真与分析[J]. 微特电机, 2018, 46 (2): 69- 72.
DOI |
LIU Y , GAO Q Z , WANG S , et al. Simulation and analysis of temperature field of new hybrid high-efficiency adjustable permanent magnetic coupler[J]. Small & Special Electrical Machines, 2018, 46 (2): 69- 72.
DOI |
|
7 |
郑李利, 周建华. 永磁圆盘形耦合电机设计分析[J]. 微特电机, 2011, 39 (1): 12- 15.
DOI |
ZHENG L L , ZHOU J H . Design of disk-shaped permanent magnet coupling machines[J]. Small & Special Electrical Machines, 2011, 39 (1): 12- 15.
DOI |
|
8 | 方晓厅. 磁悬浮无轴承无刷直流电机及其在计算机硬盘中的应用研究[D]. 西安: 西北工业大学, 2006. |
FANG X T. Magnetic suspension bearingless brushless DC motor and its application in computer hard disk[D]. Xi'an: Northwestern Polytechnical University, 2006. | |
9 |
郭嘉成, 王森, 赵阳阳, 等. 电动飞机主推进永磁同步电动机振动特性研究[J]. 微特电机, 2016, 44 (11): 37- 39.
DOI |
GUO J C , WANG S , ZHAO Y Y , et al. Research on vibration characteristics of permanent magnet synchronous motor of electric aircraft main drive[J]. Small & Special Electrical Machines, 2016, 44 (11): 37- 39.
DOI |
|
10 | 李骁, 李映辉, 赵华. 轴向运动层合圆柱壳体的振动特性[J]. 力学季刊, 2016, 37 (2): 266- 273. |
LI X , LI Y H , ZHAO H . Vibration characteristics of axially moving laminated cylindrical shells[J]. Chinese Quarterly of Mechanics, 2016, 37 (2): 266- 273. | |
11 | 张冠军, 朱翔, 李天匀, 等. 基于波传播法的椭圆柱壳自由振动特性研究[J]. 振动与冲击, 2017, 36 (12): 189- 195. |
ZHANG G J , ZHU X , LI T Y , et al. Free vibration characteristics of an elliptic cylindrical shell based on the wave propagation method[J]. Journal of Vibration and Shock, 2017, 36 (12): 189- 195. | |
12 | 李宁, 温才权, 宋永佳, 等. 克服变电站空心电抗器磁场干扰的接地系统设计[J]. 南方电网技术, 2017, 11 (5): 36- 40. |
LI N , WEN C Q , SONG Y J , et al. Grounding system design to reduce magnetic interference of air-core reactor in substation[J]. Southern Power System Technology, 2017, 11 (5): 36- 40. | |
13 | 黄小军, 杜祥国. 600 MW超临界汽轮机延长混合阀运行时间对机组振动的影响[J]. 发电技术, 2019, 40 (2): 175- 180. |
HUANG X J , DU X G . Effect of 600 MW supercritical steam turbine prolonging running time of mixing valve on unit vibration[J]. Power Generation Technology, 2019, 40 (2): 175- 180. |
[1] | Jianwei LIU, Xuebin LI, Xiaoou LIU. Distributed Power Access and Energy Storage Configuration in Active Distribution Network [J]. Power Generation Technology, 2022, 43(3): 476-484. |
[2] | Baozhong ZHOU, Dunnan LIU, Jiguang ZHANG, Yi LI, Erfeng XU, Sheng BI. Research on Optimal Allocation of Multi-Energy Complementary Project of Wind-Solar-Thermal Integration [J]. Power Generation Technology, 2022, 43(1): 10-18. |
[3] | Jing LI, Zhihe WANG, Hao NI. Research on DC Microgrid Operation Based on Improved Droop Control [J]. Power Generation Technology, 2021, 42(6): 765-774. |
[4] | Yanzhang HUANG, Yuhao ZHOU, Wenguan ZHENG, Mingxiao WANG. Research on New Integrated Energy System With Multi-power Combined Supply of Industrial Parks [J]. Power Generation Technology, 2021, 42(6): 734-740. |
[5] | Yuanyuan SHI, Cong DONG, Wenchao WANG, Xing ZHU, Yongli HUANG, Ming DING, Peng YANG. Experimental and Simulation Study of Series-Parallel Thermoelectric Power Generation Model Based on Liquid Medium [J]. Power Generation Technology, 2021, 42(5): 614-621. |
[6] | Chaoyi PENG, Kun ZHANG, Yaping HU, Yongquan NIE. Application of Dynamic Monitoring System in Electricity Market Environment [J]. Power Generation Technology, 2021, 42(5): 595-603. |
[7] | Jixin YANG, Jiuhe WANG, Mian WANG, Zhenye WANG. Research on Virtual Inertial Control Strategy of DC Microgrid With Photovoltaic and Storage System Based on Passivity-based Control [J]. Power Generation Technology, 2021, 42(5): 576-584. |
[8] | Guoqiang JI, Shanshan WU, Xiandong TAN, Baoguo SHAN. Analysis and Prospect of China's Power Supply and Demand Situation in 2021 [J]. Power Generation Technology, 2021, 42(5): 568-575. |
[9] | Chunsheng ZHAO, Junjun YANG, Jing WANG, Liqiang DUAN. Research on Low-carbon Development Path of Coal-fired Power Industry [J]. Power Generation Technology, 2021, 42(5): 547-553. |
[10] | Jingyi TANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Difference Between Electrode Electric Heating and Traditional Heating and Its Application Prospect in Carbon Neutrality [J]. Power Generation Technology, 2021, 42(5): 525-536. |
[11] | Wenbo XUAN, Hui LI, Zhongyi LIU, Yeguang SUN, Kai HOU. A Method for Improving the Accommodating Capability of Urban Renewable Energy Based on Virtual Power Plant Technology [J]. Power Generation Technology, 2021, 42(3): 289-297. |
[12] | Tao WU, Hao LIANG, Huan XIE, Yang SHI, Yan ZHAO, Guangtao ZHANG. Key Technologies and Future Prospects of Excitation System Control [J]. Power Generation Technology, 2021, 42(2): 160-170. |
[13] | Xin LU, Zhongli CHEN, Hui LI. Research on Control Strategy of Bidirectional Buck-Boost Converter in DC Microgrid Based on Active Disturbance Rejection Control [J]. Power Generation Technology, 2021, 42(2): 193-200. |
[14] | Jianhua ZHU, Zhenqing LI, Lichang XU. Modal Identification and Analysis of Photovoltaic Converter Based on Random Subspace [J]. Power Generation Technology, 2021, 42(2): 201-206. |
[15] | Jingsong DENG, Yingmin WANG, Difei SUN, Chenling ZHENG, Hanting YAN, Xiaojing GAO. Research on the Effect of IIDG on Local Feeder Protection [J]. Power Generation Technology, 2021, 42(1): 115-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||