Power Generation Technology ›› 2021, Vol. 42 ›› Issue (2): 238-246.DOI: 10.12096/j.2096-4528.pgt.21014
• New and Renewable Energy • Previous Articles Next Articles
Zezhong WANG(), Pingrui HUANG(
), Gaosheng WEI(
), Liu CUI, Chao XU, Xiaoze DU
Received:
2021-03-04
Published:
2021-04-30
Online:
2021-04-29
Supported by:
CLC Number:
Zezhong WANG, Pingrui HUANG, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Research Progress of Solid-Gas Two-Phase Chemical Heat Storage Technology for Solar Thermal Power Generation[J]. Power Generation Technology, 2021, 42(2): 238-246.
1 | 国家统计局能源统计司. 中国能源统计年鉴2019[M]. 北京: 中国统计出版社, 2020: 34- 57. |
Department of Energy Statistics, National Bureau of Statistics . China energy statistical yearbook 2019[M]. Beijing: China Statistics Press, 2020: 34- 57. | |
2 | 李立新, 周宇昊, 郑文广. 能源转型背景下分布式能源技术发展前景[J]. 发电技术, 2020, 41 (6): 571- 577. |
LI L X , ZHOU Y H , ZHENG W G . Development prospect of distributed energy technology under the background of energy transformation[J]. Power Generation Technology, 2020, 41 (6): 571- 577. | |
3 | 谭鑫, 徐秋磊, 王洁雨, 等. 基于改进共原点灰色聚类的清洁能源消纳综合效益评估[J]. 广东电力, 2021, 34 (2): 28- 35. |
TAN X , XU Q L , WANG J Y , et al. Comprehensive benefit evaluation of clean energy consumption based on improved common origin gray clustering evaluation method[J]. Guangdong Electric Power, 2021, 34 (2): 28- 35. | |
4 | 黄鹤, 秦岭, 喻洋洋, 等. 水光多能互补清洁能源智能发电技术[J]. 分布式能源, 2020, 5 (2): 21- 26. |
HUANG H , QIN L , YU Y Y , et al. Smart-power generation technology of clean energy with water-light multi-energy complementary[J]. Distributed Energy, 2020, 5 (2): 21- 26. | |
5 |
张争, 夏勇. 太阳能光热发电的发展现状及前景分析[J]. 长江工程职业技术学院学报, 2013, 30 (1): 24- 26.
DOI |
ZHANG Z , XIA Y . Development status quo and prospect analysis of solar thermal power[J]. Journal of Changjiang Institute of Technology, 2013, 30 (1): 24- 26.
DOI |
|
6 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 230. |
ZHANG Z Y , JU X , PAN X Y , et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41 (3): 220- 230. | |
7 |
XU J , WANG R Z , LI Y . A review of available technologies for seasonal thermal energy storage[J]. Solar Energy, 2014, 103, 610- 638.
DOI |
8 |
徐其利, 孙杰. 用于太阳能光热发电系统的CaO/Ca(OH)2化学储热技术综述[J]. 华电技术, 2020, 42 (4): 1- 11.
DOI |
XU Q L , SUN J . Review of CaO/Ca(OH)2 chemical heat storage technology for CSP[J]. Huadian Technology, 2020, 42 (4): 1- 11.
DOI |
|
9 |
WENTWORTH W E , CHEN E . Simple thermal decomposition reactions for storage of solar thermal energy[J]. Solar Energy, 1976, 18, 205- 214.
DOI |
10 |
ANDRÉ L , ABANADES S , FLAMANT G . Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2016, 64, 703- 715.
DOI |
11 | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33 (12): 3238- 3245. |
WU J , LONG X F . Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33 (12): 3238- 3245. | |
12 | 马小琨, 徐超, 于子博, 等. 基于水合盐热化学吸附的储热技术[J]. 科学通报, 2015, 60 (36): 3569- 3579. |
MA X K , XU C , YU Z B , et al. A review of salt hydrate-based sorption technologies for long-term thermal energy storage[J]. Chinese Science Bulletin, 2015, 60 (36): 3569- 3579. | |
13 |
PARDO P , DEYDIERA A , ANXIONNAZ-MINVIELLE Z , et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32, 591- 610.
DOI URL |
14 |
Sakellariou K G , Karagiannakis G , Criado Y A , et al. Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J]. Solar Energy, 2015, 122, 215- 230.
DOI |
15 |
SAKELLARIOU K G , CRIADO Y A , TSONGIDIS N I , et al. Multi-cyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme[J]. Solar Energy, 2017, 146, 65- 78.
DOI |
16 |
YAN J , ZHAO C Y . First-principle study of CaO/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping[J]. Chemical Engineering Science, 2014, 117, 293- 300.
DOI URL |
17 |
YAN J , ZHAO C Y . Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping[J]. Chemical Engineering Science, 2015, 138, 86- 92.
DOI |
18 |
YAN J , ZHAO C Y . Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175, 277- 284.
DOI |
19 |
ROßKOPF C , AFFLERBACH S , SCHMIDT M , et al. Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage[J]. Energy Conversion and Management, 2015, 97, 94- 102.
DOI |
20 |
AFFLERBACH S , KAPPES M , GIPPERICH A , et al. Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions[J]. Solar Energy, 2017, 148, 1- 11.
DOI |
21 |
AFFLERBACH S , AFFLERBACH K , TRETTIN R , et al. Improvement of a semipermeable shell for encapsulation of calcium hydroxide for thermochemical heat storage solutions material design and evaluation in laboratory and reactor scale[J]. Solar Energy, 2021, 217, 208- 222.
DOI |
22 |
MASTRONARDO E , BONACCORSI L , KATO Y , et al. Strategies for the enhancement of heat storage materials performances for MgO/H2O/Mg(OH)2 thermochemical storage system[J]. Applied Thermal Engineering, 2017, 120, 626- 634.
DOI |
23 |
BOWREY R G , JUTSEN J . Energy storage using the reversible oxidation of barium oxide[J]. Solar Energy, 1978, 21, 523- 525.
DOI |
24 | KARAGIANNAKIS G , PAGKOURA C , ZYGOGIANNI A , et al. Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants[J]. Energy Procedia, 2014, 149, 820- 829. |
25 |
AGRAFIOTIS C , ROEB M , SCHMUCKER M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 1:testing of cobalt oxide-based powders[J]. Solar Energy, 2014, 102, 189- 211.
DOI |
26 |
KARAGIANNAKIS G , PAGKOURA C , HALEVAS E , et al. Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: multi-cyclic assessment and semi-quantitative heat effects estimations[J]. Solar Energy, 2016, 133, 394- 407.
DOI |
27 |
AGRAFIOTIS C , ROEB M , SCHMUCKER M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 2:redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers[J]. Solar Energy, 2015, 114, 440- 458.
DOI |
28 |
AGRAFIOTIS C , TESCARI S , ROEB M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 3:cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers[J]. Solar Energy, 2015, 114, 459- 475.
DOI |
29 |
AGRAFIOTIS C , BECKER A , ROEB M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 5:testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage[J]. Solar Energy, 2016, 139, 676- 694.
DOI |
30 |
AGRAFIOTIS C , BLOCK T , SENHOLDT M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 6:testing of Mn-based combined oxides and porous structures[J]. Solar Energy, 2017, 149, 227- 244.
DOI |
31 |
BENITEZ-GUERRERO M , VALVERDE J M , SANCHEZ-JIMENEZ P E , et al. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in concentrated solar power plants[J]. Solar Energy, 2017, 153, 188- 199.
DOI |
32 |
GHORBAEI S Z , EBRAHIM H A . Carbonation reaction of strontium oxide for thermochemical energy storage and CO2 removal applications: kinetic study and reactor performance prediction[J]. Applied Energy, 2020, 277, 115604.
DOI |
33 |
BENITEZ-GUERRERO M , VALVERDE J M , PEREJON A , et al. Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power[J]. Applied Energy, 2018, 210, 108- 116.
DOI |
34 |
ANDRÉ L , ABANADES S . Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J]. Journal of Energy Storage, 2017, 13, 193- 205.
DOI |
35 |
BAGHERISERESHKI E , TRAN J , LEI F , et al. Investigation into SrO/SrCO3 for high temperature thermochemical energy storage[J]. Solar Energy, 2018, 160, 85- 93.
DOI |
36 |
DONKERS P A J , PEL L , ADAN O C G . Experimental studies for the cyclability of salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2016, 5, 25- 32.
DOI |
37 |
SUTTON R J , JEWELL E , ELVINS J , et al. Characterising the discharge cycle of CaCl2 and LiNO3 hydrated salts within a vermiculite composite scaffold for thermochemical storage[J]. Energy and Buildings, 2018, 162, 109- 120.
DOI |
38 |
MAMANI V , GUTIÉRREZ A , USHAK S . Development of low-cost inorganic salt hydrate as a thermochemical energy storage material[J]. Solar Energy Materials and Solar Cells, 2018, 176, 346- 356.
DOI |
39 |
CLARK R J , FARID M . Experimental investigation into the performance of novel SrCl2-based composite material for thermochemical energy storage[J]. Journal of Energy Storage, 2021, 36, 102390.
DOI |
40 |
Rammelberg H U , Osterland T , Priehs B , et al. Thermochemical heat storage materials: performance of mixed salt hydrates[J]. Solar Energy, 2016, 136, 571- 589.
DOI |
41 |
LI W , ZENG M , WANG Q . Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2020, 210, 110509.
DOI |
42 |
LI W , KLEMES J J , WANG Q , et al. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage[J]. Renewable Energy, 2020, 157, 920- 940.
DOI |
43 |
SCHMIDT M , GUTIERREZ A , LINDER M . Thermochemical energy storage with CaO/Ca(OH)2: experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor[J]. Applied Energy, 2017, 188, 672- 681.
DOI |
44 |
SCHMIDT M , LINDER M . Power generation based on the Ca(OH)2/CaO thermochemical storage system: experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design[J]. Applied Energy, 2017, 203, 594- 607.
DOI |
45 |
PAN Z H , ZHAO C Y . Prediction of the effective thermal conductivity of packed bed with micro-particles for thermochemical heat storage[J]. Science Bulletin, 2017, 62, 256- 265.
DOI |
46 |
PAN Z H , YAN J , ZHAO C Y . Numerical analyses and optimization of tubular thermochemical heat storage reactors using axisymmetric thermal lattice Boltzmann model[J]. Chemical Engineering Science, 2019, 195, 737- 747.
DOI |
47 |
ZENG C , LIU S , YANG L , et al. Investigation of a three-phase thermochemical reactor through an experimentally validated numerical modelling[J]. Applied Thermal Engineering, 2019, 162, 114223.
DOI |
48 | ZENG C , LIU S , SHUKLA A , et al. Numerical modelling of the operational effects on the thermochemical reactor performance[J]. Energy & Buildings, 2021, 230, 110535. |
49 |
MICHEL B , MAZET N , NEVEU P . Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance[J]. Applied Energy, 2014, 129, 177- 186.
DOI URL |
50 |
WANG B , LI L , SCHAFER F , et al. Thermal reduction of iron-manganese oxide particles in a high-temperature packed-bed solar thermochemical reactor[J]. Chemical Engineering Journal, 2021, 412, 128255.
DOI |
51 |
SCHRADER A J , DOMINICIS G , SCHIEBER G L , et al. Solar electricity via an air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions Ⅲ: solar thermochemical reactor design and modeling[J]. Solar Energy, 2017, 150, 584- 595.
DOI |
52 |
FARCOT L , PIERRÈS N , MICHEL B , et al. Numerical investigations of a continuous thermochemical heat storage reactor[J]. Journal of Energy Storage, 2018, 20, 109- 119.
DOI |
53 |
NEISES M , TESCARI S , OLIVEIRA L , et al. Solar-heated rotary kiln for thermochemical energy storage[J]. Solar Energy, 2012, 86, 3040- 3048.
DOI |
54 | ZONDAG H, KALBASENKA A, ESSEN M, et al. First studies in reactor concepts for thermochemical storage[C/OL]. Petten: ECN, 2009[2021-01-01]. http://resolver.tudelft.nl/uuid:19a8a993-7932-4519-8741-1500246c65ff. |
55 |
PARDO P , ANXIONNAZ-MINVIELLE Z , ROUGE S , et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107, 605- 616.
DOI |
56 |
FLEGKAS S , BIRKELBACH F , WINTER F , et al. Fluidized bed reactors for solid-gas thermochemical energy storage concepts: modelling and process limitations[J]. Energy, 2018, 143, 615- 623.
DOI |
57 |
CRIADO Y A , ALONSO M , ABANADES J C , et al. Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors[J]. Applied Thermal Engineering, 2014, 73, 1087- 1094.
DOI URL |
[1] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[2] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[3] | Zhenshan LI, Hu CHEN, Weicheng LI, Lei LIU, Ningsheng CAI. Research Status and Prospect of Chemical Looping Combustion Pilot Systems [J]. Power Generation Technology, 2022, 43(4): 544-561. |
[4] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[5] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[6] | Lin LI, Tongyu LIU, Shuang LI, Yixiang SHI, Ningsheng CAI. Research Progress of Hydrogen Production by Methanol Reforming for Fuel Cell Power Generation [J]. Power Generation Technology, 2022, 43(1): 44-53. |
[7] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[8] | Hao SUN, Bo GAO, Jianxing LIU. Study on Heliostat Field Layout of Solar Power Tower Plant [J]. Power Generation Technology, 2021, 42(6): 690-698. |
[9] | Lanhua LIU, Linwen DI, Xingwan DONG, Ruilin WANG. Study on Dynamic Characteristics of Parabolic Trough Solar Collector Circuit [J]. Power Generation Technology, 2021, 42(6): 673-681. |
[10] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Experimental Analysis of the Influence of Flow Rate on Heat Transfer Characteristics of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2021, 42(6): 665-672. |
[11] | Lanhua LIU, Ruilin WANG, Hui HONG. Design of Calcium-based Carbon Capture System for Gas-Steam Combined Cycle Assisted by Solar Thermal Tower [J]. Power Generation Technology, 2021, 42(4): 517-524. |
[12] | Yaodong LIU, Yanping ZHANG, Liang WAN, Wei GAO. Heat Transfer Modelling and Performance Analysis of Trough Solar Thermal Power Collector Based on Al2O3 Nanofluid [J]. Power Generation Technology, 2021, 42(2): 230-237. |
[13] | Penglei LI,Lingen CHEN,Shaojun XIA,Lei ZHANG,Chao WANG,Huijun FENG. Entropy Generation Rate and Hydrogen Production Rate Analyses for Steam Methane Reforming Reactor Heated by Molten Salt [J]. Power Generation Technology, 2020, 41(4): 415-428. |
[14] | Kaiyun ZHENG. Application of Supercritical Carbon Dioxide Cycle Power Generation Technology [J]. Power Generation Technology, 2020, 41(4): 399-406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||