Power Generation Technology ›› 2020, Vol. 41 ›› Issue (6): 667-674.DOI: 10.12096/j.2096-4528.pgt.19079
• Energy Internet • Previous Articles Next Articles
Peng XU1(), Jianbin MI2(
), Xiaofei MENG3(
), Huan XIE2(
)
Received:
2020-05-17
Published:
2020-12-31
Online:
2021-01-12
Supported by:
模型参数结构 | 阶跃试验 |
直流侧用恒电压源等效,正负电压幅值为0.560 8 kV | 等值交流电压源幅值上下10%阶跃 |
交流侧系统电感为5.43×10-5 H |
Tab. 1 PPL parameter fitting test scheme
模型参数结构 | 阶跃试验 |
直流侧用恒电压源等效,正负电压幅值为0.560 8 kV | 等值交流电压源幅值上下10%阶跃 |
交流侧系统电感为5.43×10-5 H |
模型参数结构 | 阶跃试验 |
直流侧用恒电压源等效, 正负电压幅值为0.560 8 kV | Iq由0到?0.2下阶跃 |
交流侧系统电感为5.43×10-5 H | |
利用观测轴坐标系引入电流阶跃偏差量 |
Tab. 2 Current loop parameter fitting test scheme
模型参数结构 | 阶跃试验 |
直流侧用恒电压源等效, 正负电压幅值为0.560 8 kV | Iq由0到?0.2下阶跃 |
交流侧系统电感为5.43×10-5 H | |
利用观测轴坐标系引入电流阶跃偏差量 |
模型参数结构 | 阶跃试验 |
直流侧用电流源(电压源串联大电阻的形式)等效 | 直流侧电流Idc由0到0.3阶跃 |
交流侧系统电感为5.43×10-5 H |
Tab. 3 Voltage loop parameter fitting test scheme
模型参数结构 | 阶跃试验 |
直流侧用电流源(电压源串联大电阻的形式)等效 | 直流侧电流Idc由0到0.3阶跃 |
交流侧系统电感为5.43×10-5 H |
1 | WU R , WEN J L , YU K S , et al. Power loss modeling of switching devices in voltage source converters[J]. Proceedings of the CSEE, 2012, 32 (21): 1- 7. |
2 | GAO R , JIA F M , LIAO Y H . Recent development of voltage source converter technology and its application to FACTS[J]. High Votage Apparatus, 2016, 52 (11): 10- 17. |
3 | 吴明哲, 陈武晖. VSC-HVDC稳定控制研究[J]. 发电技术, 2019, 40 (1): 28- 39. |
WU M Z , CHEN W H . Overview of research on stability and control of VSC-HVDC[J]. Power Generation Technology, 2019, 40 (1): 28- 39. | |
4 | 李英彪, 梁军, 吴广禄, 等. 多电压等级直流电力系统发展与挑战[J]. 发电技术, 2018, 39 (2): 118- 128. |
LI Y B , LIANG J , WU G L , et al. Development and challenge of dc power system with different voltage levels[J]. Power Generation Technology, 2018, 39 (2): 118- 128. | |
5 | 沈阳武, 葛云霞, 崔挺, 等. 基于阻抗比判据的永磁直驱风力发电系统并网稳定分析方法[J]. 电力系统保护与控制, 2017, 45 (18): 45- 53. |
SHEN Y W , GE Y X , CUI T , et al. A stability analysis method for the gird-connected permanent magnet synchronous generator based on impedance ratio criterions[J]. Power System Protection and Control, 2017, 45 (18): 45- 53. | |
6 | 苏咏梅, 王振宇, 易善明. 不同风力发电机组同时并网稳定性分析[J]. 电力系统保护与控制, 2017, 45 (6): 101- 107. |
SU Y M , WANG Z Y , YI S M . Stability analysis for wind power integration with different WTGS[J]. Power System Protection and Control, 2017, 45 (6): 101- 107. | |
7 | 余秀月, 宋少群, 郭瑞鹏, 等. 含电压源换流器的交直流混联电网无功优化模型[J]. 电力系统保护与控制, 2017, 45 (19): 148- 153. |
YU X Y , SONG S Q , GUO R P . Optimal reactive power flow model for AC/DC hybrid power grid with voltage source converters[J]. Power System Protection and Control, 2017, 45 (19): 148- 153. | |
8 | 张兴, 张崇巍. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2012: 115 |
ZHANG X , ZHANG C W . PWM rectifier and its control[M]. Beijing: China Machine PRESS, 2012: 115 | |
9 | ZHU H, XI X, LI Y D.PI type dynamic decoupling control scheme for PMSM high speed operation[C]//Proceeding of the Applied Power Electronics Conference and Exposition(APEC), Palm Springs, CA: IEEE, 2010: 1736-1739. |
10 | KARIMI M G, IRAVANI M R.A new phase-locked loop (PLL) system[C]//44th IEEE Midwest Symposium on Circuits and Systems (MWSCAS), 2001: 421-424. |
11 | KARIMI M G , IRAVANI M R . A nonlinear adaptive filter for online signal analysis in power systems:applications[J]. IEEE Transactions on Power Delivery, 2002, 17 (2): 617- 622. |
12 | ZHU C Y , SHI L , LI X P , et al. Lock threshold deterioration induced by antenna vibration and signal coupling effects in hypersonic vehicle carrier tracking system of Ka band[J]. Chinese Journal of Aeronautics, 2018, 31 (4): 776- 781. |
13 | 周克亮, 王政, 徐青山. 光伏与风力发电系统并网变换器[M]. 北京: 机械工业出版社, 2012: 128 |
ZHOU K L , WANG Z , XU Q S . Grid-connected converters for photovoltaic and wind power generation systems[M]. Beijing: China Machine PRESS, 2012: 128 |
[1] | Jianwei LIU, Xuebin LI, Xiaoou LIU. Distributed Power Access and Energy Storage Configuration in Active Distribution Network [J]. Power Generation Technology, 2022, 43(3): 476-484. |
[2] | Baozhong ZHOU, Dunnan LIU, Jiguang ZHANG, Yi LI, Erfeng XU, Sheng BI. Research on Optimal Allocation of Multi-Energy Complementary Project of Wind-Solar-Thermal Integration [J]. Power Generation Technology, 2022, 43(1): 10-18. |
[3] | Jing LI, Zhihe WANG, Hao NI. Research on DC Microgrid Operation Based on Improved Droop Control [J]. Power Generation Technology, 2021, 42(6): 765-774. |
[4] | Yanzhang HUANG, Yuhao ZHOU, Wenguan ZHENG, Mingxiao WANG. Research on New Integrated Energy System With Multi-power Combined Supply of Industrial Parks [J]. Power Generation Technology, 2021, 42(6): 734-740. |
[5] | Yuanyuan SHI, Cong DONG, Wenchao WANG, Xing ZHU, Yongli HUANG, Ming DING, Peng YANG. Experimental and Simulation Study of Series-Parallel Thermoelectric Power Generation Model Based on Liquid Medium [J]. Power Generation Technology, 2021, 42(5): 614-621. |
[6] | Chaoyi PENG, Kun ZHANG, Yaping HU, Yongquan NIE. Application of Dynamic Monitoring System in Electricity Market Environment [J]. Power Generation Technology, 2021, 42(5): 595-603. |
[7] | Jixin YANG, Jiuhe WANG, Mian WANG, Zhenye WANG. Research on Virtual Inertial Control Strategy of DC Microgrid With Photovoltaic and Storage System Based on Passivity-based Control [J]. Power Generation Technology, 2021, 42(5): 576-584. |
[8] | Guoqiang JI, Shanshan WU, Xiandong TAN, Baoguo SHAN. Analysis and Prospect of China's Power Supply and Demand Situation in 2021 [J]. Power Generation Technology, 2021, 42(5): 568-575. |
[9] | Chunsheng ZHAO, Junjun YANG, Jing WANG, Liqiang DUAN. Research on Low-carbon Development Path of Coal-fired Power Industry [J]. Power Generation Technology, 2021, 42(5): 547-553. |
[10] | Jingyi TANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Difference Between Electrode Electric Heating and Traditional Heating and Its Application Prospect in Carbon Neutrality [J]. Power Generation Technology, 2021, 42(5): 525-536. |
[11] | Changsheng ZONG, Qingzhong GAO, Yutong HE, Bai YANG. Analysis on Vibration Influence Factors of Hybrid Permanent Magnet Governor Rotor [J]. Power Generation Technology, 2021, 42(3): 389-394. |
[12] | Wenbo XUAN, Hui LI, Zhongyi LIU, Yeguang SUN, Kai HOU. A Method for Improving the Accommodating Capability of Urban Renewable Energy Based on Virtual Power Plant Technology [J]. Power Generation Technology, 2021, 42(3): 289-297. |
[13] | Tao WU, Hao LIANG, Huan XIE, Yang SHI, Yan ZHAO, Guangtao ZHANG. Key Technologies and Future Prospects of Excitation System Control [J]. Power Generation Technology, 2021, 42(2): 160-170. |
[14] | Xin LU, Zhongli CHEN, Hui LI. Research on Control Strategy of Bidirectional Buck-Boost Converter in DC Microgrid Based on Active Disturbance Rejection Control [J]. Power Generation Technology, 2021, 42(2): 193-200. |
[15] | Jianhua ZHU, Zhenqing LI, Lichang XU. Modal Identification and Analysis of Photovoltaic Converter Based on Random Subspace [J]. Power Generation Technology, 2021, 42(2): 201-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||