Power Generation Technology ›› 2025, Vol. 46 ›› Issue (5): 1032-1040.DOI: 10.12096/j.2096-4528.pgt.24046
• Power Generation and Environmental Protection • Previous Articles
Nan TU1, Chiyu WANG1, Xiaoqun LIU1, Jiabin FANG2
Received:2024-03-23
Revised:2024-04-28
Published:2025-10-31
Online:2025-10-23
Supported by:CLC Number:
Nan TU, Chiyu WANG, Xiaoqun LIU, Jiabin FANG. Numerical Analysis of Particle Residence Time Distribution Characteristics in Fluidized Bed Based on Orthogonal Test[J]. Power Generation Technology, 2025, 46(5): 1032-1040.
| 参数 | 数值 |
|---|---|
| 颗粒密度ρs/(kg/m3) | 2 600 |
| 颗粒粒径ds/μm | 200 |
| 示踪颗粒密度ρtr/(kg/m3) | 1 405 |
| 示踪颗粒粒径dtr/μm | 200 |
| 空气密度ρg/(kg/m3) | 1.225 |
| 空气黏度μg/(Pa·s) | 1.789 4×10-5 |
| 临界流化速度Umf/(m/s) | 0.036 8 |
Tab. 1 Physical parameters
| 参数 | 数值 |
|---|---|
| 颗粒密度ρs/(kg/m3) | 2 600 |
| 颗粒粒径ds/μm | 200 |
| 示踪颗粒密度ρtr/(kg/m3) | 1 405 |
| 示踪颗粒粒径dtr/μm | 200 |
| 空气密度ρg/(kg/m3) | 1.225 |
| 空气黏度μg/(Pa·s) | 1.789 4×10-5 |
| 临界流化速度Umf/(m/s) | 0.036 8 |
| 水平 | 因素 | ||||
|---|---|---|---|---|---|
| A(结构) | B(N/个) | C(Sf/mm) | D(Gs/(kg/h)) | E(U/(m/s)) | |
| 1 | 溢流板 | 1 | 2 | 26.25 | 4Umf |
| 2 | 底流板 | 5 | 4 | 36.25 | 6Umf |
| 3 | 侧流板 | 9 | 6 | 46.25 | 8Umf |
| 4 | — | 13 | 8 | 56.25 | 10Umf |
| 5 | — | — | 10 | 66.25 | — |
Tab. 2 Five factors and five levels of orthogonal simulation test
| 水平 | 因素 | ||||
|---|---|---|---|---|---|
| A(结构) | B(N/个) | C(Sf/mm) | D(Gs/(kg/h)) | E(U/(m/s)) | |
| 1 | 溢流板 | 1 | 2 | 26.25 | 4Umf |
| 2 | 底流板 | 5 | 4 | 36.25 | 6Umf |
| 3 | 侧流板 | 9 | 6 | 46.25 | 8Umf |
| 4 | — | 13 | 8 | 56.25 | 10Umf |
| 5 | — | — | 10 | 66.25 | — |
| 试验编号 | 因素 | 评价指标 | tav,m/s | (tm/tav,m)/% | |||||
|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | E | tm/s | σ | |||
| 1 | 1 | 3 | 3 | 3 | 2 | 161.11 | 0.173 | 173.56 | 92.83 |
| 2 | 2 | 2 | 1 | 5 | 2 | 119.87 | 0.155 | 127.16 | 94.27 |
| 3 | 1 | 2 | 4 | 1 | 3 | 240.15 | 0.438 | 272.63 | 89.19 |
| 4 | 1 | 4 | 4 | 4 | 1 | 150.93 | 0.085 | 157.57 | 95.79 |
| 5 | 1 | 1 | 1 | 1 | 1 | 306.47 | 0.494 | 348.70 | 87.89 |
| 6 | 2 | 1 | 5 | 4 | 4 | 108.60 | 0.478 | 123.05 | 88.26 |
| 7 | 1 | 1 | 3 | 5 | 1 | 127.25 | 0.386 | 139.70 | 91.09 |
| 8 | 2 | 3 | 4 | 5 | 4 | 98.26 | 0.120 | 102.94 | 95.46 |
| 9 | 3 | 3 | 1 | 4 | 3 | 135.46 | 0.078 | 139.51 | 97.10 |
| 10 | 1 | 3 | 5 | 2 | 1 | 219.77 | 0.167 | 236.55 | 96.35 |
| 11 | 3 | 1 | 4 | 2 | 2 | 199.48 | 0.557 | 228.90 | 87.15 |
| 12 | 3 | 2 | 5 | 3 | 1 | 181.17 | 0.205 | 196.06 | 92.41 |
| 13 | 2 | 3 | 2 | 1 | 1 | 316.39 | 0.143 | 336.90 | 93.92 |
| 14 | 3 | 1 | 3 | 1 | 4 | 211.35 | 0.564 | 247.36 | 85.44 |
| 15 | 1 | 2 | 2 | 2 | 4 | 168.99 | 0.305 | 186.08 | 90.82 |
| 16 | 2 | 4 | 3 | 2 | 3 | 187.36 | 0.106 | 196.83 | 95.19 |
| 17 | 2 | 1 | 2 | 3 | 3 | 140.21 | 0.504 | 161.65 | 86.74 |
| 18 | 2 | 1 | 4 | 3 | 1 | 173.70 | 0.482 | 201.56 | 86.18 |
| 19 | 3 | 4 | 2 | 5 | 1 | 132.47 | 0.042 | 135.53 | 97.74 |
| 20 | 1 | 1 | 2 | 4 | 2 | 127.70 | 0.518 | 148.23 | 86.15 |
| 21 | 2 | 4 | 5 | 1 | 2 | 276.57 | 0.180 | 298.91 | 92.53 |
| 22 | 1 | 4 | 1 | 3 | 4 | 138.79 | 0.089 | 144.57 | 96.00 |
| 23 | 1 | 1 | 5 | 5 | 3 | 101.14 | 0.493 | 115.10 | 87.87 |
| 24 | 2 | 2 | 3 | 4 | 1 | 153.66 | 0.283 | 172.05 | 89.32 |
| 25 | 2 | 1 | 1 | 2 | 1 | 220.84 | 0.451 | 252.60 | 87.43 |
Tab. 3 Mixed orthogonal test scheme and results
| 试验编号 | 因素 | 评价指标 | tav,m/s | (tm/tav,m)/% | |||||
|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | E | tm/s | σ | |||
| 1 | 1 | 3 | 3 | 3 | 2 | 161.11 | 0.173 | 173.56 | 92.83 |
| 2 | 2 | 2 | 1 | 5 | 2 | 119.87 | 0.155 | 127.16 | 94.27 |
| 3 | 1 | 2 | 4 | 1 | 3 | 240.15 | 0.438 | 272.63 | 89.19 |
| 4 | 1 | 4 | 4 | 4 | 1 | 150.93 | 0.085 | 157.57 | 95.79 |
| 5 | 1 | 1 | 1 | 1 | 1 | 306.47 | 0.494 | 348.70 | 87.89 |
| 6 | 2 | 1 | 5 | 4 | 4 | 108.60 | 0.478 | 123.05 | 88.26 |
| 7 | 1 | 1 | 3 | 5 | 1 | 127.25 | 0.386 | 139.70 | 91.09 |
| 8 | 2 | 3 | 4 | 5 | 4 | 98.26 | 0.120 | 102.94 | 95.46 |
| 9 | 3 | 3 | 1 | 4 | 3 | 135.46 | 0.078 | 139.51 | 97.10 |
| 10 | 1 | 3 | 5 | 2 | 1 | 219.77 | 0.167 | 236.55 | 96.35 |
| 11 | 3 | 1 | 4 | 2 | 2 | 199.48 | 0.557 | 228.90 | 87.15 |
| 12 | 3 | 2 | 5 | 3 | 1 | 181.17 | 0.205 | 196.06 | 92.41 |
| 13 | 2 | 3 | 2 | 1 | 1 | 316.39 | 0.143 | 336.90 | 93.92 |
| 14 | 3 | 1 | 3 | 1 | 4 | 211.35 | 0.564 | 247.36 | 85.44 |
| 15 | 1 | 2 | 2 | 2 | 4 | 168.99 | 0.305 | 186.08 | 90.82 |
| 16 | 2 | 4 | 3 | 2 | 3 | 187.36 | 0.106 | 196.83 | 95.19 |
| 17 | 2 | 1 | 2 | 3 | 3 | 140.21 | 0.504 | 161.65 | 86.74 |
| 18 | 2 | 1 | 4 | 3 | 1 | 173.70 | 0.482 | 201.56 | 86.18 |
| 19 | 3 | 4 | 2 | 5 | 1 | 132.47 | 0.042 | 135.53 | 97.74 |
| 20 | 1 | 1 | 2 | 4 | 2 | 127.70 | 0.518 | 148.23 | 86.15 |
| 21 | 2 | 4 | 5 | 1 | 2 | 276.57 | 0.180 | 298.91 | 92.53 |
| 22 | 1 | 4 | 1 | 3 | 4 | 138.79 | 0.089 | 144.57 | 96.00 |
| 23 | 1 | 1 | 5 | 5 | 3 | 101.14 | 0.493 | 115.10 | 87.87 |
| 24 | 2 | 2 | 3 | 4 | 1 | 153.66 | 0.283 | 172.05 | 89.32 |
| 25 | 2 | 1 | 1 | 2 | 1 | 220.84 | 0.451 | 252.60 | 87.43 |
| 评价指标 | 极差 | 因素 | ||||
|---|---|---|---|---|---|---|
| A | B | C | D | E | ||
| 颗粒平均停留时间tm/s | K1 | 1 742.33 | 1 716.79 | 921.46 | 1 350.96 | 1 982.70 |
| K2 | 1 795.53 | 863.86 | 885.78 | 996.47 | 884.76 | |
| K3 | 859.94 | 931.02 | 840.75 | 794.80 | 804.33 | |
| K4 | — | 886.13 | 862.54 | 676.37 | 726.01 | |
| K5 | — | — | 887.27 | 579.01 | — | |
| k1 | 174.23 | 171.67 | 184.29 | 270.19 | 198.27 | |
| k2 | 179.55 | 172.77 | 177.15 | 199.29 | 176.95 | |
| k3 | 171.98 | 186.20 | 168.15 | 158.99 | 160.86 | |
| k4 | — | 177.22 | 172.50 | 135.27 | 145.20 | |
| k5 | — | — | 177.45 | 115.80 | — | |
| R | 7.56 | 14.53 | 16.14 | 154.39 | 53.07 | |
| 主次顺序 | D>E>C>B>A | |||||
| 最优水平 | A2 | B3 | C1 | D1 | E1 | |
无量纲 方差σ | K1 | 3.147 | 4.928 | 1.268 | 1.818 | 2.738 |
| K2 | 2.903 | 1.385 | 1.512 | 1.586 | 1.583 | |
| K3 | 1.446 | 0.680 | 1.513 | 1.454 | 1.619 | |
| K4 | — | 0.503 | 1.682 | 1.441 | 1.556 | |
| K5 | — | — | 1.522 | 1.196 | — | |
| k1 | 0.314 | 0.492 | 0.253 | 0.363 | 0.273 | |
| k2 | 0.290 | 0.277 | 0.302 | 0.317 | 0.316 | |
| k3 | 0.289 | 0.136 | 0.303 | 0.290 | 0.323 | |
| k4 | — | 0.100 | 0.336 | 0.288 | 0.311 | |
| k5 | — | — | 0.304 | 0.239 | — | |
| R | 0.025 | 0.392 | 0.083 | 0.124 | 0.050 | |
| 主次顺序 | B>D>C>E>A | |||||
| 最优水平 | A2 | B4 | C1 | D5 | E1 | |
Tab. 4 Range analysis results of orthogonal simulation test
| 评价指标 | 极差 | 因素 | ||||
|---|---|---|---|---|---|---|
| A | B | C | D | E | ||
| 颗粒平均停留时间tm/s | K1 | 1 742.33 | 1 716.79 | 921.46 | 1 350.96 | 1 982.70 |
| K2 | 1 795.53 | 863.86 | 885.78 | 996.47 | 884.76 | |
| K3 | 859.94 | 931.02 | 840.75 | 794.80 | 804.33 | |
| K4 | — | 886.13 | 862.54 | 676.37 | 726.01 | |
| K5 | — | — | 887.27 | 579.01 | — | |
| k1 | 174.23 | 171.67 | 184.29 | 270.19 | 198.27 | |
| k2 | 179.55 | 172.77 | 177.15 | 199.29 | 176.95 | |
| k3 | 171.98 | 186.20 | 168.15 | 158.99 | 160.86 | |
| k4 | — | 177.22 | 172.50 | 135.27 | 145.20 | |
| k5 | — | — | 177.45 | 115.80 | — | |
| R | 7.56 | 14.53 | 16.14 | 154.39 | 53.07 | |
| 主次顺序 | D>E>C>B>A | |||||
| 最优水平 | A2 | B3 | C1 | D1 | E1 | |
无量纲 方差σ | K1 | 3.147 | 4.928 | 1.268 | 1.818 | 2.738 |
| K2 | 2.903 | 1.385 | 1.512 | 1.586 | 1.583 | |
| K3 | 1.446 | 0.680 | 1.513 | 1.454 | 1.619 | |
| K4 | — | 0.503 | 1.682 | 1.441 | 1.556 | |
| K5 | — | — | 1.522 | 1.196 | — | |
| k1 | 0.314 | 0.492 | 0.253 | 0.363 | 0.273 | |
| k2 | 0.290 | 0.277 | 0.302 | 0.317 | 0.316 | |
| k3 | 0.289 | 0.136 | 0.303 | 0.290 | 0.323 | |
| k4 | — | 0.100 | 0.336 | 0.288 | 0.311 | |
| k5 | — | — | 0.304 | 0.239 | — | |
| R | 0.025 | 0.392 | 0.083 | 0.124 | 0.050 | |
| 主次顺序 | B>D>C>E>A | |||||
| 最优水平 | A2 | B4 | C1 | D5 | E1 | |
| 评价指标 | 方差来源 | 偏方差和 | 自由度 | 均方和 | 检验统计量F值 | 显著性 | 显著性水平 |
|---|---|---|---|---|---|---|---|
| 颗粒平均停留时间tm/s | A | 237.718 | 2 | 118.859 | 0.961 | 0.423 | 不显著 |
| B | 766.865 | 3 | 255.622 | 2.067 | 0.183 | 不显著 | |
| C | 729.873 | 4 | 182.468 | 1.476 | 0.296 | 不显著 | |
| D | 74 930.399 | 4 | 18732.6 | 151.485 | <0.001 | 非常显著 | |
| E | 10 851.688 | 3 | 3 617.229 | 29.251 | <0.001 | 非常显著 | |
| 误差 | 989.28 | 8 | 123.66 | — | — | — | |
| 无量纲方差σ | A | 0.004 | 2 | 0.002 | 1.23 | 0.342 | 不显著 |
| B | 0.708 | 3 | 0.236 | 158.234 | <0.001 | 非常显著 | |
| C | 0.018 | 4 | 0.004 | 2.947 | 0.09 | 不显著 | |
| D | 0.041 | 4 | 0.01 | 6.932 | 0.01 | 显著 | |
| E | 0.012 | 3 | 0.004 | 2.612 | 0.123 | 不显著 | |
| 误差 | 0.012 | 8 | 0.001 | — | — | — |
Tab.5 Variance analysis results of orthogonal simulation test
| 评价指标 | 方差来源 | 偏方差和 | 自由度 | 均方和 | 检验统计量F值 | 显著性 | 显著性水平 |
|---|---|---|---|---|---|---|---|
| 颗粒平均停留时间tm/s | A | 237.718 | 2 | 118.859 | 0.961 | 0.423 | 不显著 |
| B | 766.865 | 3 | 255.622 | 2.067 | 0.183 | 不显著 | |
| C | 729.873 | 4 | 182.468 | 1.476 | 0.296 | 不显著 | |
| D | 74 930.399 | 4 | 18732.6 | 151.485 | <0.001 | 非常显著 | |
| E | 10 851.688 | 3 | 3 617.229 | 29.251 | <0.001 | 非常显著 | |
| 误差 | 989.28 | 8 | 123.66 | — | — | — | |
| 无量纲方差σ | A | 0.004 | 2 | 0.002 | 1.23 | 0.342 | 不显著 |
| B | 0.708 | 3 | 0.236 | 158.234 | <0.001 | 非常显著 | |
| C | 0.018 | 4 | 0.004 | 2.947 | 0.09 | 不显著 | |
| D | 0.041 | 4 | 0.01 | 6.932 | 0.01 | 显著 | |
| E | 0.012 | 3 | 0.004 | 2.612 | 0.123 | 不显著 | |
| 误差 | 0.012 | 8 | 0.001 | — | — | — |
| [1] | 沙伟燕,胡伟,何宁辉,等 .大规模虚拟储能平抑新能源功率预测误差优化调度方法[J].电力科学与技术学报,2023,38(6):167-174. |
| SHA W Y, HU W, HE N H,et al .Optimal scheduling method for stabilizing power prediction error of new energy by large-scale virtual energy storage[J].Journal of Electric Power Science and Technology,2023,38(6):167-174. | |
| [2] | 于唯一,王慧芳,曹芬,等 .考虑场景缩减和动态寿命的用户侧新能源配储研究[J].电测与仪表,2024,61(9):127-136. |
| YU W Y, WANG H F, CAO F,et al .Research on user-side energy storage configuration for renewable energy considering scenario reduction and dynamic lifetime[J].Electrical Measurement & Instrumentation,2024,61(9):127-136. | |
| [3] | 李文,卜凡鹏,张潇桐,等 .基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J].发电技术,2024,45(6):1186-1200. |
| LI W, BU F P, ZHANG X T,et al .Optimal operation method of electric-hydrogen hybrid energy storage microgrid system based on typical commercial operation mode[J].Power Generation Technology,2024,45(6):1186-1200. | |
| [4] | 姜智霖,郝峰杰,袁志昌,等 .考虑SOC优化设定的电-氢混合储能系统的运行优化[J].电力系统保护与控制,2024,52(8):65-76. |
| JIANG Z L, HAO F J, YUAN Z C,et al .Optimal operation of an electro-hydrogen hybrid energy storage system considering SOC optimization setting[J].Power System Protection and Control,2024,52(8):65-76. | |
| [5] | 黄兴华,吴涵,陈石川,等 .考虑新能源出力的孤岛微网储能配置优化方法[J].中国电力,2024,57(12):132-138. |
| HUANG X H, WU H, CHEN S C,et al .An optimization method for energy storage configuration of isolated island microgrid considering new energy output[J].Electric Power,2024,57(12):132-138. | |
| [6] | 凌祥,宋丹阳,陈晓轶,等 .钙基热化学储能体系装备与系统研究进展[J].化工进展,2021,40(4):1777-1796. |
| LING X, SONG D Y, CHEN X Y,et al .Progress in equipment and systems for calcium-based thermochemical energy storage system[J].Chemical Industry and Engineering Progress,2021,40(4):1777-1796. | |
| [7] | 顾正萌,蒋世希,吴家荣,等 .CaO/Ca(OH)2体系热化学储能应用关键问题的讨论[J].电力科技与环保,2023,39(4):285-291. doi:10.1023/a:1023840102689 |
| GU Z M, JIANG S X, WU J R,et al .A discussion of key issues for the application of CaO/Ca(OH)2 system thermochemical energy storage[J].Electric Power Technology and Environmental Protection,2023,39(4):285-291. doi:10.1023/a:1023840102689 | |
| [8] | 高巍,张聚伟,汪印,等 .连续进出料鼓泡流化床颗粒停留时间分布[J].过程工程学报,2012,12(1):9-13. |
| GAO W, ZHANG J W, WANG Y,et al .Residence time distribution of particles in a bubbling fluidized bed with their continuous input and output[J].The Chinese Journal of Process Engineering,2012,12(1):9-13. | |
| [9] | BACHMANN P, TSOTSAS E .Analysis of residence time distribution data in horizontal fluidized beds[J].Procedia Engineering,2015,102:790-798. doi:10.1016/j.proeng.2015.01.190 |
| [10] | BACHMANN P, BÜCK A, TSOTSAS E .Investigation of the residence time behavior of particulate products and correlation for the bodenstein number in horizontal fluidized beds[J].Powder Technology,2016,301:1067-1076. doi:10.1016/j.powtec.2016.07.045 |
| [11] | ZOU Z, ZHAO Y L, ZHAO H F,et al .CFD simulation of solids residence time distribution in a multi-compartment fluidized bed[J].Chinese Journal of Chemical Engineering,2017,25(12):1706-1713. doi:10.1016/j.cjche.2017.02.010 |
| [12] | KONG W B, WANG B, BAEYENS J,et al .Solids mixing in a shallow cross-flow bubbling fluidized bed[J].Chemical Engineering Science,2018,187:213-222. doi:10.1016/j.ces.2018.04.073 |
| [13] | HUA L N, ZHAO H, LI J,et al .Solid residence time distribution in a cross-flow dense fluidized bed with baffles[J].Chemical Engineering Science,2019,200:320-335. doi:10.1016/j.ces.2019.01.054 |
| [14] | 兰斌,徐骥,刘志成,等 .连续操作密相流化床颗粒停留时间分布特性模拟放大研究[J].化工学报,2021,72(1):521-533. |
| LAN B, XU J, LIU Z C,et al .Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds[J].CIESC Journal,2021,72(1):521-533. | |
| [15] | LAN B, XU J, ZHAO P J,et al .Scale-up effect of residence time distribution of polydisperse particles in continuously operated multiple-chamber fluidized beds[J].Chemical Engineering Science,2021,244(3):116809. doi:10.1016/j.ces.2021.116809 |
| [16] | 都艺伟,吴新,刘道洁 等 .内置螺旋挡板流化床颗粒停留时间分布[J].过程工程学报,2018,18(3):484-490. |
| DU Y W,WU X,LIU D J,et al,Residence time distribution of particles in fluidized bed with spiral internal[J].The Chinese Journal of Process Engineering,2018,18(3):484-490. | |
| [17] | GENG S J, QIAN Y A, ZHAN J H,et al .Prediction of solids residence time distribution in cross-flow bubbling fluidized bed[J].Powder Technology,2017,320:555-564. doi:10.1016/j.powtec.2017.07.085 |
| [18] | GIDASPOW D .Multiphase flow and fluidization:continuum and kinetic theory descriptions[M].Boston:Academic Press,1994:35-37. doi:10.1016/b978-0-08-051226-6.50013-3 |
| [1] | Hongjian WANG, Yankai HUANG, Xin YU, Dunxi YU. Experimental Study on Wide-Load Low-NO x Combustion Retrofit for Circulating Fluidized Bed Boiler Burning High-Alkali Coal [J]. Power Generation Technology, 2025, 46(5): 1005-1013. |
| [2] | Jianjun LI, Manxia SHANG, Hailong DONG, Bingming LI, Zhong HUANG. Application and Optimization Research on Combined Denitrification Technology in 350 MW Supercritical Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2025, 46(5): 1014-1021. |
| [3] | Yiwei XU, Yan HONG, Xiaopeng ZHAO, Bingwei SUI. Analysis of Influence of Coal-Ammonia Co-firing on the Heat Transfer Characteristics of Heating Surfaces in Coal-Fired Boiler [J]. Power Generation Technology, 2025, 46(5): 1022-1031. |
| [4] | Shuaining ZHANG, Mingming GAO, Yongquan WANG, Weihua WANG, Haoyang YU, Zhong HUANG. Integrated Modeling Study of Desulfurization in Circulating Fluidized Bed Boilers Under Wide Load Conditions [J]. Power Generation Technology, 2025, 46(4): 849-856. |
| [5] | Pengxin ZHANG, Mingming GAO, Peiran XIE, Haoyang YU, Hongfu ZHANG, Zhong HUANG. NO x Prediction for Deep Peaking Regulation of Circulating Fluidized Bed Units Based on Data-Driven [J]. Power Generation Technology, 2025, 46(3): 627-636. |
| [6] | Yongjun LUO, Jianbo LI, Hongyan ZHU. Experimental Study on Sintering and Melting Characteristics and Mineral Transformation Law of Synthetic Biomass Ash [J]. Power Generation Technology, 2024, 45(4): 600-610. |
| [7] | Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit [J]. Power Generation Technology, 2024, 45(3): 401-411. |
| [8] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
| [9] | Zhongming GAO, Deao ZHU, Yujia CHEN, Sanju LIU, Qinhui WANG. Experimental Study on the Air Gasification Characteristics of Agricultural and Forestry Waste in a Circulating Fluidized Bed [J]. Power Generation Technology, 2024, 45(3): 535-544. |
| [10] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
| [11] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
| [12] | Tao GUO, Haiyang YU, Haibo FENG, Hanchuan YUAN, Bing TIAN, Yujie YANG, Yuanbin ZHAO, Qian ZHAO. Experimental Study on the Influence of Air Side Equalizing Device on the Flow Heat Transfer Characteristics of Cooling Delta Unit [J]. Power Generation Technology, 2024, 45(1): 79-89. |
| [13] | Deyang GAO, Zhongyi JIANG, Kai ZHANG, Jinghui MENG. Research on Performance Optimization of Semiconductor Thermoelectric Generaor Based on Phase Change Material [J]. Power Generation Technology, 2023, 44(6): 842-849. |
| [14] | Zhonghao DONG, Xiaofeng LU, Lichao SHI, Zengzeng YANG, Fansheng KONG, Peng WANG, Guoqiang LIN, Peng ZHAO. Influence of Thermal Inertia of Refractory Material in Furnace on the Peak Regulating Rate of Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2023, 44(4): 514-524. |
| [15] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||