Power Generation Technology ›› 2026, Vol. 47 ›› Issue (1): 225-236.DOI: 10.12096/j.2096-4528.pgt.260121
• New Power System • Previous Articles
Depin FENG1, Zhengqi LIU2, Bing XU1, Tao CHEN1, Bo CUI1, Chengfu WANG2, Xiaoming DONG2
Received:2025-01-22
Revised:2025-03-18
Published:2026-02-28
Online:2026-02-12
Contact:
Chengfu WANG
Supported by:CLC Number:
Depin FENG, Zhengqi LIU, Bing XU, Tao CHEN, Bo CUI, Chengfu WANG, Xiaoming DONG. Trusted Quantification of Robust Scheduling Characteristics and Coordinated Scheduling Methods for Virtual Power Plants[J]. Power Generation Technology, 2026, 47(1): 225-236.
| 指标 | 方案 | 电网 | VPP1 | VPP2 | VPP3 | 总和 |
|---|---|---|---|---|---|---|
| 运行成本/美元 | 方案1 | 616 485 | 133 271 | 181 113 | 176 453 | 1 107 321 |
| 方案2 | 612 548 | 135 867 | 181 087 | 177 149 | 1 106 652 | |
| 市场收益/美元 | 方案1 | 0 | 46 732 | -2 957 | 10 389 | 54 164 |
| 方案2 | 0 | 48 532 | -2 975 | 10 858 | 56 414 | |
| 总成本/美元 | 方案1 | 616 485 | 86 539 | 184 070 | 166 064 | 1 053 158 |
| 方案2 | 612 548 | 87 335 | 184 062 | 166 292 | 1 050 238 | |
| 相对误差/% | 0.639 | -0.920 | 0.004 | -0.137 | 0.277 | |
Tab. 1 Comparison of results under different approaches
| 指标 | 方案 | 电网 | VPP1 | VPP2 | VPP3 | 总和 |
|---|---|---|---|---|---|---|
| 运行成本/美元 | 方案1 | 616 485 | 133 271 | 181 113 | 176 453 | 1 107 321 |
| 方案2 | 612 548 | 135 867 | 181 087 | 177 149 | 1 106 652 | |
| 市场收益/美元 | 方案1 | 0 | 46 732 | -2 957 | 10 389 | 54 164 |
| 方案2 | 0 | 48 532 | -2 975 | 10 858 | 56 414 | |
| 总成本/美元 | 方案1 | 616 485 | 86 539 | 184 070 | 166 064 | 1 053 158 |
| 方案2 | 612 548 | 87 335 | 184 062 | 166 292 | 1 050 238 | |
| 相对误差/% | 0.639 | -0.920 | 0.004 | -0.137 | 0.277 | |
| 联盟 S | 成本/美元 | 联盟 S | 成本/美元 |
|---|---|---|---|
| {Grid} | 711 838 | {VPP1,VPP3} | 240 772 |
| {VPP1} | 78 082 | {VPP2,VPP3} | 349 187 |
| {VPP2} | 186 498 | {Grid,VPP1,VPP2} | 947 851 |
| {VPP3} | 162 689 | {Grid,VPP1,VPP3} | 921 390 |
| {Grid,VPP1} | 762 584 | {Grid,VPP2,VPP3} | 1 055 916 |
| {Grid,VPP2} | 897 106 | {VPP1,VPP2,VPP3} | 427 269 |
| {Grid,VPP3} | 870 655 | {Grid,VPP1,VPP2,VPP3} | 1 106 652 |
| {VPP1,VPP2} | 264 580 |
Tab. 2 Costing for different coalitions
| 联盟 S | 成本/美元 | 联盟 S | 成本/美元 |
|---|---|---|---|
| {Grid} | 711 838 | {VPP1,VPP3} | 240 772 |
| {VPP1} | 78 082 | {VPP2,VPP3} | 349 187 |
| {VPP2} | 186 498 | {Grid,VPP1,VPP2} | 947 851 |
| {VPP3} | 162 689 | {Grid,VPP1,VPP3} | 921 390 |
| {Grid,VPP1} | 762 584 | {Grid,VPP2,VPP3} | 1 055 916 |
| {Grid,VPP2} | 897 106 | {VPP1,VPP2,VPP3} | 427 269 |
| {Grid,VPP3} | 870 655 | {Grid,VPP1,VPP2,VPP3} | 1 106 652 |
| {VPP1,VPP2} | 264 580 |
| 情形 | 成本/美元 | |||||
|---|---|---|---|---|---|---|
| Grid | VPP1 | VPP2 | VPP3 | 总和 | ||
| 不合作 | 711 838 | 78 082 | 186 498 | 162 689 | 1 139 107 | |
| 合作 | 收益不转移 | 668 962 | 87 335 | 184 062 | 166 292 | 1 106 652 |
| 收益转移 | 695 613 | 64 411 | 185 880 | 160 748 | 1 106 652 | |
Tab. 3 Cost comparison of different scenarios
| 情形 | 成本/美元 | |||||
|---|---|---|---|---|---|---|
| Grid | VPP1 | VPP2 | VPP3 | 总和 | ||
| 不合作 | 711 838 | 78 082 | 186 498 | 162 689 | 1 139 107 | |
| 合作 | 收益不转移 | 668 962 | 87 335 | 184 062 | 166 292 | 1 106 652 |
| 收益转移 | 695 613 | 64 411 | 185 880 | 160 748 | 1 106 652 | |
| 方案 | 时间 | VPP数量/个 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | ||
| 方案1 | 求解时间/s | 428.3 | 1 977.5 | 5 885.6 | 13 606.9 | 27 025.6 | >36 000.0 | >36 000.0 | >36 000.0 | >36 000.0 | >36 000.0 |
| 方案2 | 量化时间/s | 502.2 | 914.8 | 1 379.4 | 1 825.9 | 2 309.8 | 2 852.0 | 3 327.3 | 3 869.1 | 4 433.2 | 5 137.9 |
| 求解时间/s | 47.143 | 54.118 | 60.362 | 66.813 | 78.268 | 85.118 | 98.143 | 113.053 | 129.901 | 144.65 | |
| 总时间/s | 549.3 | 968.9 | 1 439.8 | 1 892.7 | 2 388.1 | 2 937.1 | 3 425.4 | 3 982.2 | 4 563.1 | 5 282.6 | |
| 目标函数相对误差/% | 0.260 | 0.273 | 0.242 | 0.404 | 0.359 | — | — | — | — | — | |
Tab. 4 Comparison of results of 5-50 VPP systems
| 方案 | 时间 | VPP数量/个 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | ||
| 方案1 | 求解时间/s | 428.3 | 1 977.5 | 5 885.6 | 13 606.9 | 27 025.6 | >36 000.0 | >36 000.0 | >36 000.0 | >36 000.0 | >36 000.0 |
| 方案2 | 量化时间/s | 502.2 | 914.8 | 1 379.4 | 1 825.9 | 2 309.8 | 2 852.0 | 3 327.3 | 3 869.1 | 4 433.2 | 5 137.9 |
| 求解时间/s | 47.143 | 54.118 | 60.362 | 66.813 | 78.268 | 85.118 | 98.143 | 113.053 | 129.901 | 144.65 | |
| 总时间/s | 549.3 | 968.9 | 1 439.8 | 1 892.7 | 2 388.1 | 2 937.1 | 3 425.4 | 3 982.2 | 4 563.1 | 5 282.6 | |
| 目标函数相对误差/% | 0.260 | 0.273 | 0.242 | 0.404 | 0.359 | — | — | — | — | — | |
| [1] | 陈启鑫,刘学,房曦晨,等 .考虑可再生能源保障性消纳的电力市场出清机制[J].电力系统自动化,2021,45(6):26-33. |
| CHEN Q X, LIU X, FANG X C,et al .Electricity market clearing mechanism considering guaranteed accommodation of renewable energy[J].Automation of Electric Power Systems,2021,45(6):26-33. | |
| [2] | 葛鑫鑫,付志扬,徐飞,等 .面向新型电力系统的虚拟电厂商业模式与关键技术[J].电力系统自动化,2022,46(18):129-146. doi:10.7500/AEPS20220430003 |
| GE X X, FU Z Y, XU F,et al .Business model and key technologies of virtual power plant for new power system[J].Automation of Electric Power Systems,2022,46(18):129-146. doi:10.7500/AEPS20220430003 | |
| [3] | 杨力帆,周鲲,齐增清,等 .基于需求响应的虚拟电厂多时间尺度优化调度[J].电网与清洁能源,2024,40(3):10-21. |
| YANG L F, ZHOU K, QI Z Q,et al .A multi-time scale optimal scheduling strategy of virtual power plants based on demand response[J].Power System and Clean Energy,2024,40(3):10-21. | |
| [4] | 卫志农,余爽,孙国强,等 .虚拟电厂的概念与发展[J].电力系统自动化,2013,37(13):1-9. doi:10.7500/AEPS201210156 |
| WEI Z N, YU S, SUN G Q,et al .Concept and development of virtual power plant[J].Automation of Electric Power Systems,2013,37(13):1-9. doi:10.7500/AEPS201210156 | |
| [5] | 蔡光宗,王伊晓,袁智强,等 .基于一致性算法的虚拟电厂调度指令动态跟踪策略[J].电力建设,2024,45(5):71-79. |
| CAI G Z, WANG Y X, YUAN Z Q,et al .Consensus-based dynamic dispatching instruction tracking strategy for virtual power plant[J].Electric Power Construction,2024,45(5):71-79. | |
| [6] | 黄蔚亮,苏志鹏,梁欣怡,等 .考虑可调市场和外部需求响应的虚拟电厂优化运行策略[J].中国电力,2023,56(12):156-163. |
| HUANG W L, SU Z P, LIANG X Y,et al .Optimal operation strategy for virtual power plant considering regulation market and external demand response[J].Electric Power,2023,56(12):156-163. | |
| [7] | 黄宇翔,陈皓勇,牛振勇,等 .基于“能量-信息-价值”三层网络的虚拟电厂架构及运行关键技术综述[J].电力系统保护与控制,2024,52(24):169-187. |
| HUANG Y X, CHEN H Y, ZHU Z Y,et al .A review of virtual power plant architecture and key operational technologies based on a “nergy-information-value” three-layer network[J].Power System Protection and Control,2024,52(24):169-187. | |
| [8] | 李明扬,张智 .基于强化学习的含分布式风-光-储虚拟电厂优化调度[J].智慧电力,2024,52(8):50-56. |
| LI M Y, ZHANG Z .Optimal dispatch of distributed wind-solar-storage virtual power plants based on reinforcement learning[J].Smart Power,2024,52(8):50-56. | |
| [9] | 曹宏宇,梁言贺,刘惠颖,等 .考虑风-光-储不确定性的新型电力系统概率潮流计算[J].电测与仪表,2024,61(6):87-93. |
| CAO H Y, LIANG Y H, LIU H Y,et al .Probabilistic power flow calculation of novel power system considering uncertainty of wind-light-storage[J].Electrical Measurement & Instrumentation,2024,61(6):87-93. | |
| [10] | 张叶青,陈文彬,徐律军,等 .面向多虚拟电厂的分层分区多层互补动态聚合调控策略[J].发电技术,2024,45(1):162-169. |
| ZHANG Y Q, CHEN W B, XU L J,et al . Multi-virtual power plant-oriented dynamic aggregation control strategy based on hierarchical partition and multi-layer complementation[J].Power Generation Technology,2024,45(1):162-169. | |
| [11] | 周亦洲,孙国强,黄文进,等 .多区域虚拟电厂综合能源协调调度优化模型[J].中国电机工程学报,2017,37(23):6780-6790. |
| ZHOU Y Z, SUN G Q, HUANG W J,et al .Optimized multi-regional integrated energy coordinated scheduling of a virtual power plant[J].Proceedings of the CSEE,2017,37(23):6780-6790. | |
| [12] | 许星原,陈皓勇,黄宇翔,等 .虚拟电厂市场化交易中的挑战、策略与关键技术[J].发电技术,2023,44(6):745-757. |
| XU X Y, CHEN H Y, HUANG Y X,et al .Challenges,strategies and key technologies for virtual power plants in market trading [J].Power Generation Technology,2023,44(6):745-757. | |
| [13] | RAHIMIYAN M, BARINGO L .Strategic bidding for a virtual power plant in the day-ahead and real-time markets:a price-taker robust optimization approach[J].IEEE Transactions on Power Systems,31(4):2676-2687. doi:10.1109/tpwrs.2015.2483781 |
| [14] | 赵振宇,李炘薪 .基于阶梯碳交易的碳捕集电厂-电转气虚拟电厂低碳经济调度[J].发电技术,2023,44(6):769-780. |
| ZHAO Z Y, LI X X .Decentralized optimal dispatching modeling for wind power integrated power system with virtual power plant[J].Power Generation Technology,2023,44(6):769-780. | |
| [15] | 于松源,张峻松,元志伟,等 .计及热惯性的热电联产虚拟电厂韧性提升策略[J].发电技术,2023,44(6):758-768. |
| YU S Y, ZHANG J S, YUAN Z W,et al .Resilience enhancement strategy of combined heat and power-virtual powerplant considering thermal inertia[J].Power Generation Technology,2023,44(6):758-768. | |
| [16] | GUO Y, TONG L, WU W,et al .Coordinated multi-area economic dispatch via critical region projection[J].IEEE Transactions on Power Systems,32(5):3736-3746. doi:10.1109/tpwrs.2017.2655442 |
| [17] | 陈启鑫,高洪超,冯成,等 .虚拟电厂动态构建与可信量化:理论分析与关键技术[J].电力系统自动化,2022,46(18):26-36. |
| CHEN Q X, GAO H C, FENG C,et al .Dynamic construction and trustworthy quantification of virtual power plant:theoretical analysis and key technologies[J].Automation of Electric Power Systems,2022,46(18):26-36. | |
| [18] | 薛景润,施啸寒,王超,等 .兼顾物理状态和用户行为的虚拟电厂紧急功率调节能力量化评估[J].中国电机工程学报,2023,43(8):2906-2921. |
| XUE J R, SHI X H, WANG C,et al .Online evaluation of emergency power regulation capability for virtual power plants considering physical characteristics and user behavior constraints[J].Proceedings of the CSEE,2023,43(8):2906-2921. | |
| [19] | 姜华,杨知方,林伟,等 .计及分布式新能源不确定性的虚拟电厂调度边界概率分布刻画方法[J].中国电机工程学报,2022,42(15):5565-5575. |
| JIANG H, YANG Z F, LIN W,et al .Probability distribution of dispatch region for a virtual power plant considering distributed renewable uncertainties[J].Proceedings of the CSEE,2022,42(15):5565-5575. | |
| [20] | BABAEI S, ZHAO C, FAN L .A data-driven model of virtual power plants in day-ahead unit commitment[J].IEEE Transactions on Power Systems,34(6):5125-5135. doi:10.1109/tpwrs.2018.2890714 |
| [21] | BERTSIMAS D,SIM M .Robust discrete optimization and network flows[J].Mathematical Programming,2003,98(1):49-71. doi:10.1007/s10107-003-0396-4 |
| [22] | DAI W, YANG Z, YU J,et al .Economic dispatch of interconnected networks considering hidden flexibility[J].Energy,2021,223:120054. doi:10.1016/j.energy.2021.120054 |
| [23] | CARRION M, ARROYO J M .A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J].IEEE Transactions on Power Systems,2006,21(3):1371-1378. doi:10.1109/tpwrs.2006.876672 |
| [1] | Jiaxin ZHANG, Yonggang PENG, Jing SUN. Two-Stage Robust Optimization Scheduling of Park-Level Hydrogen-Electric Coupling Systems With Demand Response and Carbon Trading [J]. Power Generation Technology, 2025, 46(2): 252-262. |
| [2] | Yushen WANG, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yanjin ZHU, Jianbin ZHANG. Robust Optimal Scheduling Strategy for Virtual Power Plant Participation in Electric Energy and Demand Response Markets Under Multiple Uncertainties [J]. Power Generation Technology, 2024, 45(6): 1173-1185. |
| [3] | Qiwei ZHENG, Xinyue ZHAO, Di LU, Heng CHEN, Peiyuan PAN, Tong LIU. Comparative Evaluation of Thermoelectric Decoupling Potential and Economy of Multi-Type Small Capacity Thermal Power Units [J]. Power Generation Technology, 2024, 45(5): 929-940. |
| [4] | Guichao DUAN, Gong WANG, Shengxian CAO, Jie DUAN. Research on Operation Strategy of Virtual Power Plant and Distributed Control of DG [J]. Power Generation Technology, 2024, 45(4): 765-771. |
| [5] | Jianqiang YE, Dunhu SUN. Research on Power Planning Based on Robust Optimization Under Carbon Trading Condition [J]. Power Generation Technology, 2024, 45(3): 566-574. |
| [6] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
| [7] | Zhonghao QIAN, Jun HU, Sichen SHEN, Ting QIN, Hanyi MA, Xiaodong WANG, Caoyi FENG, Zhinong WEI. Multi-Power Coordinated Optimization Operation Strategy Considering Conditional Value at Risk [J]. Power Generation Technology, 2023, 44(6): 781-789. |
| [8] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
| [9] | Songyuan YU, Junsong ZHANG, Zhiwei YUAN, Fang FANG. Resilience Enhancement Strategy of Combined Heat and Power-Virtual Power Plant Considering Thermal Inertia [J]. Power Generation Technology, 2023, 44(6): 758-768. |
| [10] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
| [11] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
| [12] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
| [13] | Yongjie ZHONG, Ling JI, Jingxia LI, Jianxun ZUO, Zidong WANG, Shiwei WU. System Framework and Comprehensive Functions of Intelligent Operation Management and Control Platform for Virtual Power Plant [J]. Power Generation Technology, 2023, 44(5): 656-666. |
| [14] | Mengshu SHI, Xiaofeng XU, Jiguang ZHANG, Yi LI, Baozhong ZHOU, Ying LE, Sheng BI. A Two-Stage Optimization Strategy for Virtual Power Plants Considering the Electricity-Hydrogen Market [J]. Power Generation Technology, 2023, 44(5): 645-655. |
| [15] | Haibin YU, Yuchen ZHANG, Yangyang LIU, Zengjie LU, Jinde WENG. Optimal Dispatching Bidding Strategy of Multi-Agent Virtual Power Plant Participating in Electricity Market Under Carbon Trading Mechanism [J]. Power Generation Technology, 2023, 44(5): 634-644. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||