Power Generation Technology ›› 2026, Vol. 47 ›› Issue (1): 53-64.DOI: 10.12096/j.2096-4528.pgt.260105
• New Energy • Previous Articles Next Articles
Jing LU1, Yuanhao YANG2, Zhonghong WANG3, Rui WANG2
Received:2025-01-17
Revised:2025-04-24
Published:2026-02-28
Online:2026-02-12
Supported by:CLC Number:
Jing LU, Yuanhao YANG, Zhonghong WANG, Rui WANG. Short-Term PV Power Prediction Considering Weather-Coupled Similar Days[J]. Power Generation Technology, 2026, 47(1): 53-64.
| 气象特征 | 相关系数 | 气象特征 | 相关系数 |
|---|---|---|---|
| 总辐射 | 0.85 | 环境温度 | 0.24 |
| 直射辐射 | 0.59 | 相对湿度 | -0.14 |
| 散射辐射 | 0.84 | 气压 | -0.16 |
Tab. 1 Spearman’s correlation coefficient between meteorological characteristics and photovoltaic power
| 气象特征 | 相关系数 | 气象特征 | 相关系数 |
|---|---|---|---|
| 总辐射 | 0.85 | 环境温度 | 0.24 |
| 直射辐射 | 0.59 | 相对湿度 | -0.14 |
| 散射辐射 | 0.84 | 气压 | -0.16 |
| 气象特征 | Spearman相关系数 | |||
|---|---|---|---|---|
| 聚类前 | 晴天 | 多云 | 雨天 | |
| 总辐射 | 0.85 | 0.84 | 0.82 | 0.76 |
| 直射辐射 | 0.59 | 0.72 | 0.54 | 0.34 |
| 散射辐射 | 0.84 | 0.84 | 0.81 | 0.71 |
| 环境温度 | 0.24 | 0.09 | 0.12 | 0.30 |
| 相对湿度 | -0.14 | -0.017 | -0.09 | -0.25 |
| 气压 | 0.16 | -0.052 | -0.03 | -0.19 |
Tab. 2 Meteorological correlation analysis under different weather conditions
| 气象特征 | Spearman相关系数 | |||
|---|---|---|---|---|
| 聚类前 | 晴天 | 多云 | 雨天 | |
| 总辐射 | 0.85 | 0.84 | 0.82 | 0.76 |
| 直射辐射 | 0.59 | 0.72 | 0.54 | 0.34 |
| 散射辐射 | 0.84 | 0.84 | 0.81 | 0.71 |
| 环境温度 | 0.24 | 0.09 | 0.12 | 0.30 |
| 相对湿度 | -0.14 | -0.017 | -0.09 | -0.25 |
| 气压 | 0.16 | -0.052 | -0.03 | -0.19 |
| 超参数 | 寻优范围 |
|---|---|
| 学习率 | [0.001, 0.01] |
| BiLSTM神经元数 | [ |
| 批量大小 | [ |
Tab. 3 Parameter optimization range
| 超参数 | 寻优范围 |
|---|---|
| 学习率 | [0.001, 0.01] |
| BiLSTM神经元数 | [ |
| 批量大小 | [ |
| 天气类型 | 模型 | 无相似日 | 有相似日 | ||||
|---|---|---|---|---|---|---|---|
| RMSE/MW | MAE/MW | R2 | RMSE/MW | MAE/MW | R2 | ||
| 晴天 | BP | 3.381 | 2.938 | 0.988 | 2.575 | 1.901 | 0.993 |
| ELM | 2.206 | 1.774 | 0.995 | 2.137 | 1.502 | 0.995 | |
| LSTM | 1.984 | 1.355 | 0.996 | 1.929 | 1.237 | 0.996 | |
| BiLSTM | 1.907 | 1.391 | 0.996 | 1.732 | 1.180 | 0.997 | |
| 多云 | BP | 6.179 | 4.556 | 0.946 | 5.315 | 3.995 | 0.961 |
| ELM | 5.357 | 4.144 | 0.960 | 4.733 | 3.478 | 0.968 | |
| LSTM | 4.611 | 3.642 | 0.970 | 4.420 | 3.272 | 0.972 | |
| BiLSTM | 4.362 | 3.163 | 0.973 | 4.092 | 2.888 | 0.976 | |
| 雨天 | BP | 5.615 | 4.436 | 0.759 | 5.251 | 3.806 | 0.789 |
| ELM | 5.446 | 4.250 | 0.773 | 4.817 | 3.469 | 0.822 | |
| LSTM | 4.764 | 3.875 | 0.826 | 4.702 | 2.848 | 0.831 | |
| BiLSTM | 4.745 | 2.920 | 0.828 | 4.608 | 2.742 | 0.837 | |
Tab. 4 Comparison of single model prediction errors
| 天气类型 | 模型 | 无相似日 | 有相似日 | ||||
|---|---|---|---|---|---|---|---|
| RMSE/MW | MAE/MW | R2 | RMSE/MW | MAE/MW | R2 | ||
| 晴天 | BP | 3.381 | 2.938 | 0.988 | 2.575 | 1.901 | 0.993 |
| ELM | 2.206 | 1.774 | 0.995 | 2.137 | 1.502 | 0.995 | |
| LSTM | 1.984 | 1.355 | 0.996 | 1.929 | 1.237 | 0.996 | |
| BiLSTM | 1.907 | 1.391 | 0.996 | 1.732 | 1.180 | 0.997 | |
| 多云 | BP | 6.179 | 4.556 | 0.946 | 5.315 | 3.995 | 0.961 |
| ELM | 5.357 | 4.144 | 0.960 | 4.733 | 3.478 | 0.968 | |
| LSTM | 4.611 | 3.642 | 0.970 | 4.420 | 3.272 | 0.972 | |
| BiLSTM | 4.362 | 3.163 | 0.973 | 4.092 | 2.888 | 0.976 | |
| 雨天 | BP | 5.615 | 4.436 | 0.759 | 5.251 | 3.806 | 0.789 |
| ELM | 5.446 | 4.250 | 0.773 | 4.817 | 3.469 | 0.822 | |
| LSTM | 4.764 | 3.875 | 0.826 | 4.702 | 2.848 | 0.831 | |
| BiLSTM | 4.745 | 2.920 | 0.828 | 4.608 | 2.742 | 0.837 | |
| K | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 |
|---|---|---|---|---|---|---|---|
| 2 | 0.000 40 | 0.025 71 | |||||
| 3 | 0.000 32 | 0.023 44 | 0.089 68 | ||||
| 4 | 0.000 29 | 0.022 63 | 0.075 76 | 0.214 43 | |||
| 5 | 0.000 27 | 0.022 22 | 0.070 59 | 0.167 09 | 0.350 95 | ||
| 6 | 0.000 25 | 0.021 90 | 0.065 24 | 0.126 40 | 0.226 53 | 0.380 04 | |
| 7 | 0.000 18 | 0.021 50 | 0.061 69 | 0.112 26 | 0.188 77 | 0.289 63 | 0.409 55 |
Tab. 5 Center frequency at different values of K
| K | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 |
|---|---|---|---|---|---|---|---|
| 2 | 0.000 40 | 0.025 71 | |||||
| 3 | 0.000 32 | 0.023 44 | 0.089 68 | ||||
| 4 | 0.000 29 | 0.022 63 | 0.075 76 | 0.214 43 | |||
| 5 | 0.000 27 | 0.022 22 | 0.070 59 | 0.167 09 | 0.350 95 | ||
| 6 | 0.000 25 | 0.021 90 | 0.065 24 | 0.126 40 | 0.226 53 | 0.380 04 | |
| 7 | 0.000 18 | 0.021 50 | 0.061 69 | 0.112 26 | 0.188 77 | 0.289 63 | 0.409 55 |
| 天气类型 | 模型 | 无相似日 | 有相似日 | ||||
|---|---|---|---|---|---|---|---|
| RMSE/MW | MAE/MW | R2 | RMSE/MW | MAE/MW | R2 | ||
| 晴天 | BiLSTM | 1.907 | 1.391 | 0.996 | 1.732 | 1.180 | 0.997 |
| 方法1 | 1.835 | 1.388 | 0.996 | 1.536 | 0.957 | 0.997 | |
| 方法2 | 1.783 | 1.475 | 0.997 | 1.257 | 0.883 | 0.998 | |
| 方法3 | 1.246 | 0.965 | 0.998 | 0.896 | 0.734 | 0.999 | |
| 方法4 | 0.832 | 0.718 | 0.999 | 0.748 | 0.591 | 0.999 | |
| 本文方法 | 0.711 | 0.615 | 0.999 | 0.632 | 0.511 | 0.999 | |
| 多云 | BiLSTM | 4.362 | 3.163 | 0.973 | 4.092 | 2.888 | 0.976 |
| 方法1 | 4.221 | 3.015 | 0.975 | 3.938 | 2.852 | 0.978 | |
| 方法2 | 2.455 | 1.844 | 0.991 | 2.311 | 1.782 | 0.992 | |
| 方法3 | 2.270 | 1.689 | 0.993 | 2.159 | 1.635 | 0.993 | |
| 方法4 | 2.131 | 1.662 | 0.994 | 2.073 | 1.585 | 0.994 | |
| 本文方法 | 1.906 | 1.503 | 0.995 | 1.782 | 1.428 | 0.996 | |
| 雨天 | BiLSTM | 4.745 | 2.920 | 0.828 | 4.608 | 2.742 | 0.837 |
| 方法1 | 4.596 | 2.892 | 0.838 | 4.432 | 2.857 | 0.850 | |
| 方法2 | 2.875 | 2.339 | 0.937 | 1.756 | 1.417 | 0.976 | |
| 方法3 | 1.355 | 1.061 | 0.986 | 1.298 | 0.945 | 0.987 | |
| 方法4 | 1.283 | 0.980 | 0.987 | 1.125 | 0.806 | 0.990 | |
| 本文方法 | 1.189 | 0.928 | 0.989 | 1.024 | 0.716 | 0.992 | |
Tab. 6 Comparison of combined model prediction errors
| 天气类型 | 模型 | 无相似日 | 有相似日 | ||||
|---|---|---|---|---|---|---|---|
| RMSE/MW | MAE/MW | R2 | RMSE/MW | MAE/MW | R2 | ||
| 晴天 | BiLSTM | 1.907 | 1.391 | 0.996 | 1.732 | 1.180 | 0.997 |
| 方法1 | 1.835 | 1.388 | 0.996 | 1.536 | 0.957 | 0.997 | |
| 方法2 | 1.783 | 1.475 | 0.997 | 1.257 | 0.883 | 0.998 | |
| 方法3 | 1.246 | 0.965 | 0.998 | 0.896 | 0.734 | 0.999 | |
| 方法4 | 0.832 | 0.718 | 0.999 | 0.748 | 0.591 | 0.999 | |
| 本文方法 | 0.711 | 0.615 | 0.999 | 0.632 | 0.511 | 0.999 | |
| 多云 | BiLSTM | 4.362 | 3.163 | 0.973 | 4.092 | 2.888 | 0.976 |
| 方法1 | 4.221 | 3.015 | 0.975 | 3.938 | 2.852 | 0.978 | |
| 方法2 | 2.455 | 1.844 | 0.991 | 2.311 | 1.782 | 0.992 | |
| 方法3 | 2.270 | 1.689 | 0.993 | 2.159 | 1.635 | 0.993 | |
| 方法4 | 2.131 | 1.662 | 0.994 | 2.073 | 1.585 | 0.994 | |
| 本文方法 | 1.906 | 1.503 | 0.995 | 1.782 | 1.428 | 0.996 | |
| 雨天 | BiLSTM | 4.745 | 2.920 | 0.828 | 4.608 | 2.742 | 0.837 |
| 方法1 | 4.596 | 2.892 | 0.838 | 4.432 | 2.857 | 0.850 | |
| 方法2 | 2.875 | 2.339 | 0.937 | 1.756 | 1.417 | 0.976 | |
| 方法3 | 1.355 | 1.061 | 0.986 | 1.298 | 0.945 | 0.987 | |
| 方法4 | 1.283 | 0.980 | 0.987 | 1.125 | 0.806 | 0.990 | |
| 本文方法 | 1.189 | 0.928 | 0.989 | 1.024 | 0.716 | 0.992 | |
| [1] | 崔勇,韩一春,郑谦,等 .多能联盟低碳运营决策方法研究框架与展望[J].电测与仪表,2024,61(3):10-19. doi:10.1002/ese3.1659 |
| CUI Y, HAN Y C, ZHENG Q,et al .Research framework and prospect of multi-energy alliance low-carbon operation decision-making method[J].Electrical Measurement & Instrumentation,2024,61(3):10-19. doi:10.1002/ese3.1659 | |
| [2] | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
| XU H H, SHAO G P, E C L,et al .Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
| [3] | 董明,李晓枫,杨章,等 .基于数据驱动的分布式光伏发电功率预测方法研究进展[J].电网与清洁能源,2024,40(1):8-17. |
| DONG M, LI X F, YANG Z,et al .Research progress on data-driven prediction methods for distributed photovoltaic power generation[J].Power System and Clean Energy,2024,40(1):8-17. | |
| [4] | 战文华,车建峰,王勃,等 .基于网格化数值天气预报的区域光伏发电多输出功率预测方法[J].中国电力,2024,57(3):144-151. |
| ZHAN W H, CHE J F, WANG B,et al .A grid-based numerical weather prediction method for multi-output prediction of regional photovoltaic power[J].Electric Power,2024,57(3):144-151. | |
| [5] | 王瑞,靳鑫鑫,逯静 .SVMD-PE-BP-Transformer短期光伏功率预测[J].电网与清洁能源,2024,40(8):141-150. |
| WANG R, JIN X X, LU J .SVMD-PE-BP-transformer short-term PV power prediction[J].Advances of Power System & Hydroelectric Engineering,2024,40(8):141-150. | |
| [6] | 邹港,赵斌,罗强,等 .基于PCA-VMD-MVO-SVM的短期光伏输出功率预测方法[J].电力科学与技术学报,2024,39(5):163-171. |
| ZOU G, ZHAO B, LUO Q,et al .Prediction method of short-term PV output power based on PCA-VMD-MVO-SVM[J].Journal of Electric Power Science and Technology,2024,39(5):163-171. | |
| [7] | 胡烜彬,纪正森,许晓敏 .DPCA-POA-RF-Informer在多情景光伏多步预测中的应用[J].智慧电力,2024,52(1):8-13. |
| HU X B, JI Z S, XU X M .Application of DPCA-POA-RF-informer in multi-scenario multi-step prediction of photovoltaic power[J].Smart Power,2024,52(1):8-13. | |
| [8] | 邱书琦,蹇照民,方立雄,等 .基于变分模态分解和集成学习的光伏发电预测[J].智慧电力,2024,52(3):32-38. |
| QIU S Q, JIAN Z M, FANG L X,et al .Photovoltaic power generation forecasting based on variational modal decomposition and ensemble learning[J].Smart Power,2024,52(3):32-38. | |
| [9] | 韩晓,王涛,韦晓广,等 .考虑阵列间时空相关性的超短期光伏出力预测[J].电力系统保护与控制,2024,52(14):82-94. |
| HAN X, WANG T, WEI X G,et al .Ultrashort-term photovoltaic output forecasting considering spatiotemporal correlation between arrays[J].Power System Protection and Control,2024,52(14):82-94. | |
| [10] | 陈庆斌,杨耿煌,耿丽清,等 .基于相似日选取和数据重构的短期光伏功率组合预测方法[J].中国电力,2024,57(12):71-81. |
| CHEN Q B, YANG G H, GENG L Q,et al .Short term photovoltaic power combination prediction method based on similar day selection and data reconstruction[J].Electric Power,2024,57(12):71-81. | |
| [11] | 谢小瑜,周俊煌,张勇军,等 .基于W-BiLSTM的可再生能源超短期发电功率预测方法[J].电力系统自动化,2021,45(8):175-184. |
| XIE X Y, ZHOU J H, ZHANG Y J,et al .W-BiLSTM based ultra-short-term generation power prediction method of renewable energy[J].Automation of Electric Power Systems,2021,45(8):175-184. | |
| [12] | 文爽,马逸骋,孙志强 .基于GWO-EEMD-BP神经网络的光伏发电功率短期预测[J].中南大学学报(自然科学版),2022,53(12):4799-4808. |
| WEN S, MA Y C, SUN Z Q .Short-term prediction of photovoltaic power based on GWO-EEMD-BP[J].Journal of Central South University (Science and Technology),2022,53(12):4799-4808. | |
| [13] | 商立群,李洪波,侯亚东,等 .基于VMD-ISSA-KELM的短期光伏发电功率预测[J].电力系统保护与控制,2022,50(21):138-148. |
| SHANG L Q, LI H B, HOU Y D,et al .Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J].Power System Protection and Control,2022,50(21):138-148. | |
| [14] | 杨国华,张鸿皓,郑豪丰,等 .基于相似日聚类和IHGWO-WNN-AdaBoost模型的短期光伏功率预测[J].高电压技术,2021,47(4):1185-1194. |
| YANG G H, ZHANG H H, ZHENG H F,et al .Short-term photovoltaic power forecasting based on similar weather clustering and IHGWO-WNN-AdaBoost model[J].High Voltage Engineering,2021,47(4):1185-1194. | |
| [15] | 吉锌格,李慧,刘思嘉,等 .基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制,2020,48(7):50-57. |
| JI X G, LI H, LIU S J,et al .Short-term photovoltaic power forecasting based on MIE-LSTM[J].Power System Protection and Control,2020,48(7):50-57. | |
| [16] | 王光华,张纪欣,崔良,等 .基于双重注意力变换模型的分布式屋顶光伏变电站级日前功率预测[J].全球能源互联网,2024,7(4):393-405. |
| WANG G H, ZHANG J X, CUI L,et al .Substation-level distributed rooftop photovoltaic power day-ahead prediction based on double attention mechanism transformer model[J].Journal of Global Energy Interconnection,2024,7(4):393-405. | |
| [17] | 汪繁荣,梅涛,卢璐 .基于相似日聚类和VMD-LTWDBO-BiLSTM的短期光伏功率预测[J].智慧电力,2024,52(10):56-63. |
| WANG F R, MEI T, LU L .Short-term PV power prediction based on similar day clustering with VMD-LTWDBO-BiLSTM[J].Smart Power,2024,52(10):56-63. | |
| [18] | 王开艳,杜浩东,贾嵘,等 .基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J].高电压技术,2022,48(11):4372-4388. |
| WANG K Y, DU H D, JIA R,et al .Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J].High Voltage Engineering,2022,48(11):4372-4388. | |
| [19] | 王晓霞,俞敏,冀明,等 .基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测[J].太阳能学报,2023,44(6):275-283. |
| WANG X X, YU M, JI M,et al. Photovoltaic power combination forecasting based on climate similarity and SSA-CNN-LSTM[J].Acta Energiae Solaris Sinica,2023,44(6):275-283. | |
| [20] | 彭宇文,杨之乐,李冰,等 .基于VMD-ISSA-LSTM的短期光伏发电功率预测[J].广东电力,2024, |
| 37(1):18-26. PENG Y W, YANG Z L, LI B,et al .Short term photovoltaic power generation prediction based on VMD-ISSA-LSTM[J].Guangdong Electric Power,2024,37(1):18-26. | |
| [21] | 崔星,李晋国,张照贝,等 .基于改进粒子群算法优化LSTM的短期电力负荷预测[J].电测与仪表,2024,61(1):131-136. |
| CUI X, LI J G, ZHANG Z B,et al .The short-term power load forecasting based on NIWPSO-LSTM neural network[J].Electrical Measurement & Instrumentation,2024,61(1):131-136. | |
| [22] | 毕贵红,赵鑫,陈臣鹏,等 .基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测[J].电网技术,2022,46(9):3463-3476. |
| BI G H, ZHAO X, CHEN C P,et al .Ultra-short-term prediction of photovoltaic power generation based on multi-channel input and PCNN-BiLSTM[J].Power System Technology,2022,46(9):3463-3476. | |
| [23] | FERAHTIA S, HOUARI A, REZK H,et al. Red-tailed hawk algorithm for numerical optimization and real-world problems[J].Scientific Reports,2023,13:12950. doi:10.1038/s41598-023-38778-3 |
| [1] | Xi WANG, Xinyi CHEN. Power Prediction Method for Offshore Wind Farms Based on Temporal Convolutional Network-Transformer [J]. Power Generation Technology, 2025, 46(6): 1123-1132. |
| [2] | Bin LUO, Xiaolong BAI, Tianlei ZANG, Yan HUANG, Lin ZHANG, Meng LI, Xuexia ZHANG, Yonglong JIANG. Review of Research on Wind-Solar-Hydro Complementary Power Generation Systems [J]. Power Generation Technology, 2025, 46(6): 1097-1111. |
| [3] | Yangfan ZHANG, Yilin LI, Lin YE, Xuejiao FU, Zhengyu WANG, Yaohan WANG. Short-Term Wind Power Prediction Method Considering Wind Turbine Operation Status Clustering Under Low-Temperature Conditions [J]. Power Generation Technology, 2025, 46(2): 326-335. |
| [4] | Honghai KUANG, Qian GUO. Short-Term Wind Power Prediction Method Based on Multimodal Feature Extraction-Convolutional Neural Network-Long-Short Term Memory Network [J]. Power Generation Technology, 2025, 46(1): 93-102. |
| [5] | Kang YANG, Lanqing LI, Yifeng LI, Dongkuo SONG, Bolun WANG, Jin CHEN, Xia ZHOU, Yu SHAN. A Novel Distributed Photovoltaic Output Interval Prediction Method [J]. Power Generation Technology, 2024, 45(4): 684-695. |
| [6] | Shubang HUANG, Yao CHEN, Yuqing JIN. A Multi-channel Feature Combination Model for Ultra-short-term Wind Power Prediction Under Carbon Neutral Background [J]. Power Generation Technology, 2021, 42(1): 60-68. |
| [7] | Zhengling YANG, Ruxue WAGN, Jian QIAO, Xi ZHANG, Zhao YANG, Jun ZHANG. Analysis of the Influence of Atmospheric Pressure Difference on Spatial Correlation Prediction of Wind Speed [J]. Power Generation Technology, 2020, 41(6): 617-624. |
| [8] | Xincheng JIN,Xiuyuan YANG. Data Pre-processing Method Based on Distorted Data Noise Reduction and Its Application in Wind Power Prediction [J]. Power Generation Technology, 2020, 41(4): 447-451. |
| [9] | Zheyang ZHANG,Xing JU,Xinyu PAN,Yu YANG,Chao XU,Xiaoze DU. Photovoltaic/Concentrated Solar Power Hybrid Technology and Its Commercial Application [J]. Power Generation Technology, 2020, 41(3): 220-230. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||