Power Generation Technology ›› 2025, Vol. 46 ›› Issue (1): 126-134.DOI: 10.12096/j.2096-4528.pgt.24032
• Power Generation and Environmental Protection • Previous Articles
Wenqiang LU1,2, Yan CHEN3, Jinglun FU2,4,5, Haisong LIU3, Xiangling KONG5
Received:
2024-02-24
Revised:
2024-05-18
Published:
2025-02-28
Online:
2025-02-27
Supported by:
CLC Number:
Wenqiang LU, Yan CHEN, Jinglun FU, Haisong LIU, Xiangling KONG. Uncertainty Analysis of Gas Turbine Overall Performance Based on Monte Carlo Method[J]. Power Generation Technology, 2025, 46(1): 126-134.
参数 | 厂家公开数据 | Gatecycle软件 | GTPC软件 | ||
---|---|---|---|---|---|
计算 结果 | 误差 | 计算 结果 | 误差 | ||
进气损失/MPa | 0 | 0 | 0 | 0 | 0 |
出气损失/MPa | 0 | 0 | 0 | 0 | 0 |
P0/MPa | 0.101 3 | 0.101 3 | 0 | 0.101 3 | 0 |
T0/℃ | 15 | 15 | 0 | 15 | 0 |
G0/(kg/s) | 83.150 | 83.15 | 0 | 83.159 | 0.011 |
G1/(kg/s) | 83.150 | 83.15 | 0 | 83.159 | 0.011 |
P1/MPa | 1.013 | 1.013 | 0 | 1.013 | 0.000 |
T1/℃ | 15 | 15 | 0 | 15 | 0.000 |
G2/(kg/s) | — | 67.220 | — | 81.902 | — |
P2/MPa | 2.200 2 | 2.340 6 | 0.638 1 | 2.200 3 | 0.004 |
T2/℃ | 476.480 | 486.720 | 2.149 | 476.490 | 0.002 |
ηcomp/% | — | 85 | — | 84.559 | — |
Gf /(kg/s) | 1.730 | 1.670 | -3.468 | 1.730 | 0 |
Tf /℃ | — | 15 | — | 15 | — |
G3/(kg/s) | — | 68.890 | — | 68.258 | — |
P3/MPa | — | 2.211 9 | — | 2.199 5 | — |
T3 /℃ | — | 1 365.000 | — | 1 360.53 | — |
ηturb /% | — | 90.000 | — | 85.664 | — |
G4/(kg/s) | 84.330 | 83.570 | -0.901 | 84.889 | 0.663 |
P4/MPa | 0.047 31 | 0.049 65 | 0.049 46 | 0.047 31 | 0 |
T4/℃ | 835.560 | 837.110 | 0.185 | 835.630 | 0.008 |
Gbleed3/(kg/s) | — | 1.250 | — | 1.247 | — |
Pbleed3/MPa | 0.584 7 | 0.6420 | 0.980 0 | 0.584 7 | 0 |
Tbleed3 /℃ | 280.630 | 241.800 | 13.837 | 280.630 | 0 |
n /(r/min) | 9 687 | 9 586 | 1.043 | 9 687 | 0 |
效率/% | 31.372 | 31.880 | 1.619 | 31.370 | -0.006 |
功率/MW | 41.120 | 40.170 | -2.310 | 41.067 | -0.129 |
Tab. 1 Calculated thermal performance
参数 | 厂家公开数据 | Gatecycle软件 | GTPC软件 | ||
---|---|---|---|---|---|
计算 结果 | 误差 | 计算 结果 | 误差 | ||
进气损失/MPa | 0 | 0 | 0 | 0 | 0 |
出气损失/MPa | 0 | 0 | 0 | 0 | 0 |
P0/MPa | 0.101 3 | 0.101 3 | 0 | 0.101 3 | 0 |
T0/℃ | 15 | 15 | 0 | 15 | 0 |
G0/(kg/s) | 83.150 | 83.15 | 0 | 83.159 | 0.011 |
G1/(kg/s) | 83.150 | 83.15 | 0 | 83.159 | 0.011 |
P1/MPa | 1.013 | 1.013 | 0 | 1.013 | 0.000 |
T1/℃ | 15 | 15 | 0 | 15 | 0.000 |
G2/(kg/s) | — | 67.220 | — | 81.902 | — |
P2/MPa | 2.200 2 | 2.340 6 | 0.638 1 | 2.200 3 | 0.004 |
T2/℃ | 476.480 | 486.720 | 2.149 | 476.490 | 0.002 |
ηcomp/% | — | 85 | — | 84.559 | — |
Gf /(kg/s) | 1.730 | 1.670 | -3.468 | 1.730 | 0 |
Tf /℃ | — | 15 | — | 15 | — |
G3/(kg/s) | — | 68.890 | — | 68.258 | — |
P3/MPa | — | 2.211 9 | — | 2.199 5 | — |
T3 /℃ | — | 1 365.000 | — | 1 360.53 | — |
ηturb /% | — | 90.000 | — | 85.664 | — |
G4/(kg/s) | 84.330 | 83.570 | -0.901 | 84.889 | 0.663 |
P4/MPa | 0.047 31 | 0.049 65 | 0.049 46 | 0.047 31 | 0 |
T4/℃ | 835.560 | 837.110 | 0.185 | 835.630 | 0.008 |
Gbleed3/(kg/s) | — | 1.250 | — | 1.247 | — |
Pbleed3/MPa | 0.584 7 | 0.6420 | 0.980 0 | 0.584 7 | 0 |
Tbleed3 /℃ | 280.630 | 241.800 | 13.837 | 280.630 | 0 |
n /(r/min) | 9 687 | 9 586 | 1.043 | 9 687 | 0 |
效率/% | 31.372 | 31.880 | 1.619 | 31.370 | -0.006 |
功率/MW | 41.120 | 40.170 | -2.310 | 41.067 | -0.129 |
变量参数 | 概率分布函数 | 样本点分布 | ||
---|---|---|---|---|
M | S | M | S | |
压气机入口空气质量/(kg/s) | 105.00 | 5.25 | 104.84 | 5.26 |
压气机效率/% | 86.41 | 0.50 | 86.41 | 0.50 |
高压透平效率/% | 90.00 | 0.52 | 90.00 | 0.52 |
冷气相对流量/% | 19.15 | 0.25 | 19.15 | 0.25 |
Tab. 2 Distribution of uncertainty parameters
变量参数 | 概率分布函数 | 样本点分布 | ||
---|---|---|---|---|
M | S | M | S | |
压气机入口空气质量/(kg/s) | 105.00 | 5.25 | 104.84 | 5.26 |
压气机效率/% | 86.41 | 0.50 | 86.41 | 0.50 |
高压透平效率/% | 90.00 | 0.52 | 90.00 | 0.52 |
冷气相对流量/% | 19.15 | 0.25 | 19.15 | 0.25 |
变量参数 | Case 1 | Case 2 | Case 3 | Case 4 | ||||
---|---|---|---|---|---|---|---|---|
M | S | M | S | M | S | M | S | |
压气机入口空气质量/(kg/s) | 104.84 | 0 | 104.84 | 0 | 104.84 | 5.26 | 104.84 | 5.26 |
压气机效率/% | 86.41 | 0.1、0.5、1.0、2.1 | 86.41 | 0 | 86.41 | 0.1、0.5、1.0、2.1 | 86.41 | 0.50 |
高压透平效率/% | 90.00 | 0 | 90.00 | 0.1、0.5、1.0、2.1 | 90.00 | 0.52 | 90.00 | 0.1、0.5、1.0、2.1 |
冷气相对流量/% | 19.15 | 0 | 19.15 | 0 | 19.15 | 0.25 | 19.15 | 0.25 |
Tab. 3 Probability distributions of uncertainty parameters offor each sample point
变量参数 | Case 1 | Case 2 | Case 3 | Case 4 | ||||
---|---|---|---|---|---|---|---|---|
M | S | M | S | M | S | M | S | |
压气机入口空气质量/(kg/s) | 104.84 | 0 | 104.84 | 0 | 104.84 | 5.26 | 104.84 | 5.26 |
压气机效率/% | 86.41 | 0.1、0.5、1.0、2.1 | 86.41 | 0 | 86.41 | 0.1、0.5、1.0、2.1 | 86.41 | 0.50 |
高压透平效率/% | 90.00 | 0 | 90.00 | 0.1、0.5、1.0、2.1 | 90.00 | 0.52 | 90.00 | 0.1、0.5、1.0、2.1 |
冷气相对流量/% | 19.15 | 0 | 19.15 | 0 | 19.15 | 0.25 | 19.15 | 0.25 |
对比方案 | 不确定参数 | 分析内容 |
---|---|---|
Case 1 | 压气机效率 | 单参数及多因素耦合情况下,压气机效率不同概率分布程度的影响 |
Case 3 | 压气机入口空气质量、压气机效率、透平效率、冷气相对流量 |
Tab. 4 Compressor efficiency uncertainty comparison
对比方案 | 不确定参数 | 分析内容 |
---|---|---|
Case 1 | 压气机效率 | 单参数及多因素耦合情况下,压气机效率不同概率分布程度的影响 |
Case 3 | 压气机入口空气质量、压气机效率、透平效率、冷气相对流量 |
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
压气机效率 | S/S0.1 | 1.000 | 5.141 | 10.137 | 15.555 | 19.427 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.043 | 2.043 |
S/S0.1 | 1.000 | 4.909 | 9.636 | 14.818 | 18.455 | |
排气温度 | M/℃ | 520.990 | 521.050 | 521.050 | 521.050 | 521.070 |
S/S0.1 | 1.000 | 5.108 | 10.062 | 15.480 | 19.714 | |
压气机出口压力 | M/MPa | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 |
S/S0.1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
压气机出口温度 | M/℃ | 472.500 | 472.500 | 472.500 | 472.500 | 472.500 |
S/S0.1 | 1.000 | 5.143 | 10.138 | 15.593 | 19.502 | |
高压透平出口压力 | M/MPa | 0.555 2 | 0.555 2 | 0.555 2 | 0.555 1 | 0.555 0 |
S/S0.1 | 1.000 | 5.157 | 10.176 | 15.627 | 19.520 | |
高压透平出口温度 | M/℃ | 849.830 | 849.810 | 849.850 | 849.730 | 849.660 |
S/S0.1 | 1.000 | 5.142 | 10.136 | 15.595 | 19.510 |
Tab. 5 Probability distribution of gas turbine performance parameters under compressor efficiency uncertainty
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
压气机效率 | S/S0.1 | 1.000 | 5.141 | 10.137 | 15.555 | 19.427 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.043 | 2.043 |
S/S0.1 | 1.000 | 4.909 | 9.636 | 14.818 | 18.455 | |
排气温度 | M/℃ | 520.990 | 521.050 | 521.050 | 521.050 | 521.070 |
S/S0.1 | 1.000 | 5.108 | 10.062 | 15.480 | 19.714 | |
压气机出口压力 | M/MPa | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 |
S/S0.1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
压气机出口温度 | M/℃ | 472.500 | 472.500 | 472.500 | 472.500 | 472.500 |
S/S0.1 | 1.000 | 5.143 | 10.138 | 15.593 | 19.502 | |
高压透平出口压力 | M/MPa | 0.555 2 | 0.555 2 | 0.555 2 | 0.555 1 | 0.555 0 |
S/S0.1 | 1.000 | 5.157 | 10.176 | 15.627 | 19.520 | |
高压透平出口温度 | M/℃ | 849.830 | 849.810 | 849.850 | 849.730 | 849.660 |
S/S0.1 | 1.000 | 5.142 | 10.136 | 15.595 | 19.510 |
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
压气机效率 | S/S0.1 | 1.000 | 4.867 | 9.814 | 14.758 | 20.168 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.038 | 2.037 |
S/S0.1 | 1.000 | 1.007 | 1.004 | 0.999 | 1.017 | |
排气温度 | M/℃ | 521.060 | 521.070 | 521.040 | 521.060 | 520.620 |
S/S0.1 | 1.000 | 0.981 | 0.995 | 0.974 | 0.992 | |
压气机出口压力 | M/MPa | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
压气机出口温度 | M/℃ | 472.560 | 472.540 | 472.600 | 472.650 | 472.780 |
S/S0.1 | 1.000 | 4.860 | 9.915 | 14.850 | 20.172 | |
高压透平出口压力 | M/MPa | 0.555 1 | 0.555 1 | 0.555 1 | 0.555 1 | 0.555 5 |
S/S0.1 | 1.000 | 1.412 | 2.182 | 3.091 | 4.013 | |
高压透平出口温度 | M/℃ | 849.830 | 849.820 | 849.770 | 849.710 | 849.600 |
S/S0.1 | 1.000 | 1.363 | 1.944 | 2.809 | 3.550 |
Tab. 6 Probability distribution of gas turbine performance parameters under the coupling of compressor efficiency and other parameter uncertainties
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
压气机效率 | S/S0.1 | 1.000 | 4.867 | 9.814 | 14.758 | 20.168 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.038 | 2.037 |
S/S0.1 | 1.000 | 1.007 | 1.004 | 0.999 | 1.017 | |
排气温度 | M/℃ | 521.060 | 521.070 | 521.040 | 521.060 | 520.620 |
S/S0.1 | 1.000 | 0.981 | 0.995 | 0.974 | 0.992 | |
压气机出口压力 | M/MPa | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
压气机出口温度 | M/℃ | 472.560 | 472.540 | 472.600 | 472.650 | 472.780 |
S/S0.1 | 1.000 | 4.860 | 9.915 | 14.850 | 20.172 | |
高压透平出口压力 | M/MPa | 0.555 1 | 0.555 1 | 0.555 1 | 0.555 1 | 0.555 5 |
S/S0.1 | 1.000 | 1.412 | 2.182 | 3.091 | 4.013 | |
高压透平出口温度 | M/℃ | 849.830 | 849.820 | 849.770 | 849.710 | 849.600 |
S/S0.1 | 1.000 | 1.363 | 1.944 | 2.809 | 3.550 |
对比方案 | 不确定参数 | 分析内容 |
---|---|---|
Case 2 | 透平效率 | 单参数及多因素耦合情况下,透平效率不同概率分布程度的影响 |
Case 4 | 压气机入口空气质量、压气机效率、透平效率、冷气相对流量 |
Tab. 7 Turbine eefficiency uuncertainty comparison ccomparison sschemecases
对比方案 | 不确定参数 | 分析内容 |
---|---|---|
Case 2 | 透平效率 | 单参数及多因素耦合情况下,透平效率不同概率分布程度的影响 |
Case 4 | 压气机入口空气质量、压气机效率、透平效率、冷气相对流量 |
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
透平效率 | S/S0.1 | 1.000 | 5.190 | 10.619 | 15.204 | 20.889 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.043 | 2.043 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
排气温度 | M/℃ | 520.990 | 521.050 | 520.990 | 520.990 | 520.930 |
S/S0.1 | 1.000 | 5.190 | 10.618 | 15.207 | 20.893 | |
压气机出口 压力 | M/MPa | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
压气机出口 温度 | M/℃ | 472.500 | 472.500 | 472.500 | 472.500 | 472.500 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
高压透平排压 压力 | M/℃ | 0.555 3 | 0.555 2 | 0.555 2 | 0.555 2 | 0.555 1 |
S/S0.1 | 1.000 | 5.184 | 10.612 | 15.184 | 20.867 | |
高压透平排气 温度 | M | 849.850 | 849.850 | 849.850 | 849.850 | 849.850 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 |
Tab. 8 Probability Probabilistic distributions of gas turbine performance parameters for single under turbine blade efficiency uncertainty
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
透平效率 | S/S0.1 | 1.000 | 5.190 | 10.619 | 15.204 | 20.889 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.043 | 2.043 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
排气温度 | M/℃ | 520.990 | 521.050 | 520.990 | 520.990 | 520.930 |
S/S0.1 | 1.000 | 5.190 | 10.618 | 15.207 | 20.893 | |
压气机出口 压力 | M/MPa | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 | 2.237 1 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
压气机出口 温度 | M/℃ | 472.500 | 472.500 | 472.500 | 472.500 | 472.500 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 | |
高压透平排压 压力 | M/℃ | 0.555 3 | 0.555 2 | 0.555 2 | 0.555 2 | 0.555 1 |
S/S0.1 | 1.000 | 5.184 | 10.612 | 15.184 | 20.867 | |
高压透平排气 温度 | M | 849.850 | 849.850 | 849.850 | 849.850 | 849.850 |
S/S0.1 | 0 | 0 | 0 | 0 | 0 |
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
透平效率 | S/S0.1 | 1.000 | 5.097 | 10.410 | 15.185 | 20.809 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.038 | 2.043 |
S/S0.1 | 1.000 | 1.001 | 1.000 | 0.998 | 0.999 | |
排气温度/℃ | M/℃ | 521.060 | 521.070 | 521.040 | 521.040 | 521.000 |
S/S0.1 | 1.000 | 2.901 | 5.463 | 7.957 | 10.845 | |
压气机出口压力 | M/MPa | 22.371 | 22.371 | 22.371 | 22.371 | 22.371 |
S/S0.1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
压气机出口温度 | M/℃ | 472.560 | 472.540 | 472.510 | 472.550 | 472.520 |
S/S0.1 | 1.000 | 0.981 | 0.997 | 1.001 | 1.001 | |
高压透平排气压力 | M/MPa | 5.551 | 5.551 | 5.553 | 5.550 | 5.551 |
S/S0.1 | 1.000 | 1.407 | 2.142 | 2.915 | 3.887 | |
高压透平排气温度 | M/℃ | 842.820 | 849.820 | 849.870 | 849.810 | 849.850 |
S/S0.1 | 1.000 | 1.072 | 1.072 | 1.070 | 1.038 |
Tab. 9 Probability distribution of gas turbine performance parameters under the coupling of turbine efficiency and other parameter uncertainties
参数 | 数据类型 | 数值 | ||||
---|---|---|---|---|---|---|
无偏差 | S=0.1 | S=0.5 | S=1.0 | S=2.0 | ||
透平效率 | S/S0.1 | 1.000 | 5.097 | 10.410 | 15.185 | 20.809 |
燃油质量流量 | M/(kg/s) | 2.043 | 2.043 | 2.043 | 2.038 | 2.043 |
S/S0.1 | 1.000 | 1.001 | 1.000 | 0.998 | 0.999 | |
排气温度/℃ | M/℃ | 521.060 | 521.070 | 521.040 | 521.040 | 521.000 |
S/S0.1 | 1.000 | 2.901 | 5.463 | 7.957 | 10.845 | |
压气机出口压力 | M/MPa | 22.371 | 22.371 | 22.371 | 22.371 | 22.371 |
S/S0.1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
压气机出口温度 | M/℃ | 472.560 | 472.540 | 472.510 | 472.550 | 472.520 |
S/S0.1 | 1.000 | 0.981 | 0.997 | 1.001 | 1.001 | |
高压透平排气压力 | M/MPa | 5.551 | 5.551 | 5.553 | 5.550 | 5.551 |
S/S0.1 | 1.000 | 1.407 | 2.142 | 2.915 | 3.887 | |
高压透平排气温度 | M/℃ | 842.820 | 849.820 | 849.870 | 849.810 | 849.850 |
S/S0.1 | 1.000 | 1.072 | 1.072 | 1.070 | 1.038 |
参数 | 原始 设计值 | 不确定性概率计算 | |
---|---|---|---|
M | S | ||
终端功率/MW | 41.876 | 41.847 | 2.201 |
燃机终端效率/% | 40.937 | 40.932 | 0.548 |
燃油质量流量/(kg/s) | 2.043 | 2.042 | 0.103 |
压气机出口压力/MPa | 2.237 1 | 2.237 1 | 0.000 0 |
压气机出口温度/℃ | 472.500 | 472.540 | 2.508 |
高压透平出口压力/MPa | 0.555 2 | 0.555 1 | 0.007 6 |
高压透平出口温度/℃ | 849.860 | 849.820 | 2.152 |
排气温度/℃ | 521.050 | 521.070 | 4.504 |
Tab. 10 Probability distribution of newly designed gas turbine parameters
参数 | 原始 设计值 | 不确定性概率计算 | |
---|---|---|---|
M | S | ||
终端功率/MW | 41.876 | 41.847 | 2.201 |
燃机终端效率/% | 40.937 | 40.932 | 0.548 |
燃油质量流量/(kg/s) | 2.043 | 2.042 | 0.103 |
压气机出口压力/MPa | 2.237 1 | 2.237 1 | 0.000 0 |
压气机出口温度/℃ | 472.500 | 472.540 | 2.508 |
高压透平出口压力/MPa | 0.555 2 | 0.555 1 | 0.007 6 |
高压透平出口温度/℃ | 849.860 | 849.820 | 2.152 |
排气温度/℃ | 521.050 | 521.070 | 4.504 |
1 | 金云峰,刘超,邓高峰,等 .燃气轮机进气过滤系统维修周期经济性分析[J].发电技术,2022,43(1):119-125. |
JIN Y F, LIU C, DENG G F,et al .Cost benefit analysis for maintenance strategy of gas turbine inlet filtration system[J].Power Generation Technology,2022,43(1):119-125. | |
2 | 邱彬,付经伦 .燃气轮机排气扩压器研究现状[J].发电技术,2021,42(4):437-446. |
QIU B, FU J L .Research status of gas turbine exhaust diffuser[J].Power Generation Technology,2021,42(4):437-446. | |
3 | MONTOMOLI F, CARNEVALE M, D’AMMARO A,et al .Uncertainty quantification in computational fluid dynamics and aircraft engines[M].Berlin:Springer International Publishing,2015. doi:10.1007/978-3-319-14681-2_4 |
4 | BUNKER R S .The effects of manufacturing tolerances on gas turbine cooling[J].Journal of Turbomachinery,2009,131(4):041018. doi:10.1115/1.3072494 |
5 | SIDWELL V, DARMOFAL D .Probabilistic analysis of a turbine cooling air supply system:the effect on oxidation life[C]// ASME Turbo Expo 2003,Collocated with the 2003 International Joint Power Generation Conference.Atlanta,Georgia,USA:ASME,2003:1189-1198. doi:10.1115/gt2003-38119 |
6 | BATURIN O, POPOV G, NICOLALDE P .Identification of the mathematical model of a gas turbine engine taking into account the uncertainty of the intial data[C]//Proceeding of ASME Turbo Expo 2021.Newyork,USA:ASME,2021:76018. doi:10.1115/gtindia2021-76018 |
7 | ZHANG C Y, LU C, FEI C W,et al .Dynamic probabilistic design technique for multi-component system with multi-failure modes[J].Journal of Central South University,2018,25(11):2688-2700. doi:10.1007/s11771-018-3946-x |
8 | CLOUD D, STEARNS E .Probabilistic analysis of a turbofan secondary flow system[C]//Proceeding of ASME Turbo Expro 2004.Vienna,Austria:ASME,2004:53197. doi:10.1115/gt2004-53197 |
9 | STEARNS E,CLOUD,D, FILBURN T .Probabilistic thermal analysis of gas turbine internal hardware[C]//Proceeding of ASME Turbo Expro 2006.Barcelona,Spain:ASME,2006:90881. doi:10.1115/gt2006-90881 |
10 | COOKE A, CHILDS P, LONG C .Investigation into the effect of uncertainty in thermal properties on turbomachinery disc heat transfer using both a monte carlo simulation technique and a taylor series uncertainty propagation method[C]//Proceeding of ASME Turbo Expro 2007.Montreal,Canada:ASME,2007:27573. doi:10.1115/gt2007-27573 |
11 | BISCHOFF T, VOIGT M, CHEHAB E,et al .Probabilistic analysis of stationary gas turbine secondary air systems[C]//Proceeding of ASME Turbo Expro 2006.Barcelona,Spain:ASME,2006:90261. doi:10.1115/gt2006-90261 |
12 | CUNEO A, TRAVERSO A, SHAHPAR S .Comparative analysis of methodologies for uncertainty propagation and quantification[C]//Proceeding of ASME Turbo Expro 2017.Charlotte,North Carolina,USA:ASME,2017:63238. doi:10.1115/gt2017-63238 |
13 | YOUNGHANS J L, JOHNSON J E, CSONKA S J .A methodology to assess design uncertainty in selecting affordable gas turbine technology[C]//ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition.Hague,Netherlands:ASME,1994:GT-419. doi:10.1115/94-gt-419 |
14 | KURZKE J .Some applications of the Monte Carlo method to gas turbine performance simulations[C]//Proceeding of ASME Turbo Expro 1997.Singapore:ASME,1997:97-GT-48. doi:10.1115/97-gt-048 |
15 | CHAO M A, LILLEY D S, MATHE P,et al .Calibration and uncertainty quantification of gas turbine performance models[C]//Proceeding of ASME Turbo Expro 2015.Montreal,Quebec,Canada:ASME,2015:42392. doi:10.1115/gt2015-42392 |
16 | 吴仲华 .气体热力学性质[M].北京:科学出版社,1957. |
WU Z H .Thermodynamic Properties of Gas[M].Beijing:Science Press,1957. | |
17 | JOACHIM K .Some applications of the Monte Carlo method to gas turbine performance simulations[C]//Proceeding of ASME 1997.Singapore:ASME,1997:004T16A003. doi:10.1115/97-gt-048 |
[1] | Chaojun GUAN, Zhengling LEI, Haibo HUO, Fang WANG, Guoquan YAO, Tao LIU. Active Disturbance Rejection Control of Output Voltage of Solid Oxide Fuel Cell Based on Reinforcement Learning [J]. Power Generation Technology, 2024, 45(6): 1163-1172. |
[2] | Chao ZHANG, Haichuan ZHANG, Jinglun FU, Zhiting TONG, Junqiang ZHU. Research Progress on Film Cooling Fed by Crossflow Ribbed Passage of Gas Turbine Blades [J]. Power Generation Technology, 2024, 45(5): 781-792. |
[3] | Jing REN, Xueying LI. Research Status and Development Trend of Rotating Internal Cooling Channel in Gas Turbine Blade [J]. Power Generation Technology, 2024, 45(5): 793-801. |
[4] | Qiuru ZUO, Yong LUAN, Yihui XIONG, Yu RAO. Review of Research on Swirl Cooling Technology of Gas Turbine Blades [J]. Power Generation Technology, 2024, 45(5): 802-813. |
[5] | Ming CHENG, Yangyang XIANG, Guangwei YANG, Qiang ZHOU, Jun LI. Analysis of Application Status and Key Issues of Hydrogen Blending Power Generation Technology for H-class Gas Turbine [J]. Power Generation Technology, 2024, 45(5): 814-825. |
[6] | Wenchang YU, Yang DING, Xuyang WANG, Yonggang CHEN, Ke BI, Zhigang LIU, Xingang SHANGGUAN, Daohuo HUANG, Feng XIAO, Guang LI, Guang WANG, Hanzhang KE, Yasong SUN, Xin WANG. Optimization and Evaluation of Cooling Structure of Stage 1 Blade of Heavy-Duty Gas Turbine [J]. Power Generation Technology, 2024, 45(5): 838-846. |
[7] | Yuheng SHI, Runze LIU, Shilong LI, Dongxiang JIANG. SGT5-4000F Gas Turbine Improvement and Upgrade Measures Analysis [J]. Power Generation Technology, 2024, 45(5): 847-855. |
[8] | Mingyang ZHAO, Linlin YIN, Wentao WEI, Yun CHEN, Richen LIU, Jun LI. Impact of Falling Blocks of High Pressure Turbine Rotor Blades With Squealer Tip on the Aerodynamic Performance and Vibration Characteristics [J]. Power Generation Technology, 2024, 45(5): 856-867. |
[9] | You WANG, Xiaodong ZHANG, Pei HAO, Xu HAN, Luwei DENG, Guoqiang LI, Fushuang WEI, Xiang JI. New Environmental/Thermal Barrier Coatings Suitable for Hydrogen Doped Gas Turbines [J]. Power Generation Technology, 2024, 45(5): 868-877. |
[10] | Fuyuan FENG, Tongyu LI, Bo LI, Heng CHEN, Peiyuan PAN, Gang XU, Tong LIU. Performance Analysis of Combined Medical Waste-Waste Tire Resource Utilization System Based on Gasification and Pyrolysis [J]. Power Generation Technology, 2024, 45(4): 611-621. |
[11] | Jianqiang YE, Dunhu SUN. Research on Power Planning Based on Robust Optimization Under Carbon Trading Condition [J]. Power Generation Technology, 2024, 45(3): 566-574. |
[12] | Xiaobiao FU, Jiaqi HOU, Baoju LI, Yakun WEN, Xiaowen LAI, Lei GUO, Zhiwei WANG, Yao WANG, Haifeng ZHANG, Dexin LI. A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction [J]. Power Generation Technology, 2024, 45(2): 299-311. |
[13] | Zeyang CUI, Xiangling KONG, Jinglun FU, Jiajun SHI. An Image-Based Turbine Blade Parameter Inspection Method [J]. Power Generation Technology, 2024, 45(1): 106-112. |
[14] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[15] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||