Power Generation Technology ›› 2023, Vol. 44 ›› Issue (5): 685-695.DOI: 10.12096/j.2096-4528.pgt.22036
• New Energy • Previous Articles Next Articles
Zhongliang GAO1,2, Qi GENG1,3, Zhe WANG1, Ting GAO3, Yingfeng LI1, Lei CHEN3, Meicheng LI1
Received:
2023-05-11
Published:
2023-10-31
Online:
2023-10-30
Supported by:
CLC Number:
Zhongliang GAO, Qi GENG, Zhe WANG, Ting GAO, Yingfeng LI, Lei CHEN, Meicheng LI. Structure Optimization and Experimental Study of PEDOT:PSS/Si Hybrid Solar Cells With SiNWs[J]. Power Generation Technology, 2023, 44(5): 685-695.
组序号 | SiNWs长度/nm | 表面复合速率/(cm⋅s-1) |
---|---|---|
1 | 1 000 | 0 |
1 000 | 200 | |
1 000 | 400 | |
1 000 | 600 | |
1 000 | 800 | |
1 000 | 1 000 | |
1 000 | 1 200 | |
1 000 | 1 400 | |
1 000 | 1 600 | |
1 000 | 1 800 | |
1 000 | 2 000 | |
2 | 0 | 0 |
200 | 1 000 | |
400 | 1 000 | |
600 | 1 000 | |
800 | 1 000 | |
1 000 | 1 000 | |
3 | 0 | 0 |
200 | 0 | |
400 | 0 | |
600 | 0 | |
800 | 0 | |
1 000 | 0 |
Tab. 1 Key parameters of PEDOT:PSS/Si hybrid solar cell simulation
组序号 | SiNWs长度/nm | 表面复合速率/(cm⋅s-1) |
---|---|---|
1 | 1 000 | 0 |
1 000 | 200 | |
1 000 | 400 | |
1 000 | 600 | |
1 000 | 800 | |
1 000 | 1 000 | |
1 000 | 1 200 | |
1 000 | 1 400 | |
1 000 | 1 600 | |
1 000 | 1 800 | |
1 000 | 2 000 | |
2 | 0 | 0 |
200 | 1 000 | |
400 | 1 000 | |
600 | 1 000 | |
800 | 1 000 | |
1 000 | 1 000 | |
3 | 0 | 0 |
200 | 0 | |
400 | 0 | |
600 | 0 | |
800 | 0 | |
1 000 | 0 |
表面复合速率/(cm⋅s-1) | 短路电流密度/(mA⋅cm-2) | 开路电压/mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 33.24 | 579 | 80.26 | 15.45 |
200 | 32.95 | 537 | 74.34 | 13.15 |
400 | 32.65 | 516 | 71.87 | 12.11 |
600 | 32.36 | 509 | 69.06 | 11.37 |
800 | 32.07 | 495 | 67.98 | 10.79 |
1 000 | 31.78 | 488 | 66.43 | 10.30 |
1 200 | 31.50 | 481 | 65.19 | 9.88 |
1 400 | 31.22 | 474 | 64.19 | 9.50 |
1 600 | 30.95 | 467 | 63.38 | 9.16 |
1 800 | 30.67 | 460 | 62.70 | 8.84 |
2 000 | 30.40 | 460 | 61.20 | 8.56 |
Tab. 2 Performance parameters of PEDOT:PSS/Si hybrid solar cell with different surface recombination rates
表面复合速率/(cm⋅s-1) | 短路电流密度/(mA⋅cm-2) | 开路电压/mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 33.24 | 579 | 80.26 | 15.45 |
200 | 32.95 | 537 | 74.34 | 13.15 |
400 | 32.65 | 516 | 71.87 | 12.11 |
600 | 32.36 | 509 | 69.06 | 11.37 |
800 | 32.07 | 495 | 67.98 | 10.79 |
1 000 | 31.78 | 488 | 66.43 | 10.30 |
1 200 | 31.50 | 481 | 65.19 | 9.88 |
1 400 | 31.22 | 474 | 64.19 | 9.50 |
1 600 | 30.95 | 467 | 63.38 | 9.16 |
1 800 | 30.67 | 460 | 62.70 | 8.84 |
2 000 | 30.40 | 460 | 61.20 | 8.56 |
SiNWs长度/nm | 短路电流密度/ (mA⋅cm-2) | 开路电压/ mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 33.84 | 579 | 82.02 | 16.07 |
200 | 33.66 | 530 | 73.63 | 13.13 |
400 | 33.53 | 509 | 72.52 | 12.38 |
600 | 33.30 | 495 | 71.66 | 11.81 |
800 | 32.81 | 495 | 68.72 | 11.16 |
1 000 | 31.78 | 488 | 66.43 | 10.30 |
Tab. 3 Performance parameters of PEDOT:PSS/Si hybrid solar cell with different SiNWs lengths
SiNWs长度/nm | 短路电流密度/ (mA⋅cm-2) | 开路电压/ mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 33.84 | 579 | 82.02 | 16.07 |
200 | 33.66 | 530 | 73.63 | 13.13 |
400 | 33.53 | 509 | 72.52 | 12.38 |
600 | 33.30 | 495 | 71.66 | 11.81 |
800 | 32.81 | 495 | 68.72 | 11.16 |
1 000 | 31.78 | 488 | 66.43 | 10.30 |
SiNWs长度/nm | 短路电流密度/(mA⋅cm-2) | 开路电压/mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 33.84 | 579 | 82.02 | 16.07 |
200 | 33.70 | 579 | 82.06 | 16.01 |
400 | 33.64 | 579 | 81.80 | 15.93 |
600 | 33.47 | 579 | 80.64 | 15.63 |
800 | 33.47 | 579 | 80.64 | 15.63 |
1 000 | 33.24 | 579 | 80.26 | 15.45 |
Tab. 4 Performance parameters of PEDOT:PSS/Si hybrid solar cell without surface recombination under different SiNWs lengths
SiNWs长度/nm | 短路电流密度/(mA⋅cm-2) | 开路电压/mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 33.84 | 579 | 82.02 | 16.07 |
200 | 33.70 | 579 | 82.06 | 16.01 |
400 | 33.64 | 579 | 81.80 | 15.93 |
600 | 33.47 | 579 | 80.64 | 15.63 |
800 | 33.47 | 579 | 80.64 | 15.63 |
1 000 | 33.24 | 579 | 80.26 | 15.45 |
SiNWs长度/nm | 短路电流密度/(mA⋅cm-2) | 开路电压/ mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 27.17 | 593 | 72.07 | 11.61 |
246 | 31.16 | 572 | 72.27 | 12.88 |
371 | 31.38 | 558 | 70.52 | 12.71 |
617 | 32.55 | 551 | 64.27 | 11.53 |
938 | 33.98 | 544 | 53.22 | 9.83 |
Tab. 5 Performance parameters of PEDOT:PSS/Si hybrid solar cell with different SiNWs lengths
SiNWs长度/nm | 短路电流密度/(mA⋅cm-2) | 开路电压/ mV | 填充因子/ % | 转换效率/ % |
---|---|---|---|---|
0 | 27.17 | 593 | 72.07 | 11.61 |
246 | 31.16 | 572 | 72.27 | 12.88 |
371 | 31.38 | 558 | 70.52 | 12.71 |
617 | 32.55 | 551 | 64.27 | 11.53 |
938 | 33.98 | 544 | 53.22 | 9.83 |
1 | LIU R, LEE S T, SUN B .13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer[J].Advanced Materials,2014,26(34):6007-6012. doi:10.1002/adma.201402076 |
2 | WEI W R, TSAI M L, HO S T,et al .Above-11%- efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures[J].Nano Letters,2013,13(8):3658-3663. doi:10.1021/nl401540h |
3 | LIU Y, SUN N, LIU J,et al .Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops[J].ACS Nano,2018,12(3):2893-2899. doi:10.1021/acsnano.8b00416 |
4 | GREEN M A .Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients[J].Solar Energy Materials and Solar Cells,2008,92(11):1305-1310. doi:10.1016/j.solmat.2008.06.009 |
5 | GREEN M A, KEEVERS M J .Optical properties of intrinsic silicon at 300 K[J].Progress in Photovoltaics:Research and Applications,1995,3(3):189-192. doi:10.1002/pip.4670030303 |
6 | SCHINKE C, CHRISTIAN PEEST P, SCHMIDT J,et al .Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J].AIP Advances,2015,5(6):67168. doi:10.1063/1.4923379 |
7 | KIM D R, LEE C H, RAO P M,et al .Hybrid Si microwire and planar solar cells:passivation and characterization[J].Nano Letters,2011,11(7):2704-2708. doi:10.1021/nl2009636 |
8 | WANG H P, LIN T Y, HSU C W,et al .Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions[J].ACS Nano,2013,7(10):9325-9335. doi:10.1021/nn404015y |
9 | HE J, YANG Z, LIU P,et al .Hybrid solar cells:enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications[J].Advanced Energy Materials,2016,6(8):70048. doi:10.1002/aenm.201670048 |
10 | WANG F, ZHANG X, WANG L,et al .Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells[J].Journal of Power Sources,2015,293:698-705. doi:10.1016/j.jpowsour.2015.05.124 |
11 | LIU R, SUN T, LIU J,et al .Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching[J].Nanotechnology,2016,27(25):254006. doi:10.1088/0957-4484/27/25/254006 |
12 | JEONG S, GARNETT E C, WANG S,et al .Hybrid silicon nanocone-polymer solar cells[J].Nano Letters,2012,12(6):2971-2976. doi:10.1021/nl300713x |
13 | PARK K T, KIM H J, PARK M J,et al .13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode[J].Scientific Reports,2015,5:12093. doi:10.1038/srep12093 |
14 | 李英峰,张涛,张衡,等 .太阳能光伏光热高效综合利用技术[J].发电技术,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 |
LI Y F, ZHANG T, ZHANG H,et al .Efficient and comprehensive photovoltaic/photothermal utilization technologies for solar energy[J].Power Generation Technology,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 | |
15 | ZHANG J, ZHANG Y, ZHANG F,et al .Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)[J].Applied Physics Letters,2013,102(1):1991. doi:10.1063/1.4773368 |
16 | HE L,RUSLI, JIANG C,et al .Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells[J].IEEE Electron Device Letters,2011,32(10):1406-1408. doi:10.1109/led.2011.2162222 |
17 | LIANG Z, SU M, WANG H,et al .Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance[J].ACS Applied Materials & Interfaces,2015,7(10):5830-5836. doi:10.1021/am508879b |
18 | DUAN Z, LI M, CHONTO T M .Effective light absorption using the double-sided pyramid gratings for thin-film silicon solar cell[J].Nanoscale Research Letters,2018,13(1):192. doi:10.1186/s11671-018-2607-1 |
19 | CHATTOPADHYAY S, HUANG Y F, JEN Y J,et al .Anti-reflecting and photonic nanostructures[J].Materials Science and Engineering,2010,69(1/2/3):1-35. doi:10.1016/j.mser.2010.04.001 |
20 | RAUT H K, GANESH V A, NAIR A S,et al .Anti-reflective coatings:a critical,in-depth review[J].Energy & Environmental Science,2011,4(10):3779-3804. doi:10.1039/c1ee01297e |
21 | DUAN Z, LI M, MWENYA T,et al .Effective light absorption and its enhancement factor for silicon nanowire-based solar cell[J].Applied Optics,2016,55(1):117-121. doi:10.1364/ao.55.000117 |
22 | CHEN C W, HSIAO S Y, CHEN C Y,et al .Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells[J].Journal of Materials Chemistry A,2015,3(17):9152-9159. doi:10.1039/c4ta05237d |
23 | LI Y, LI M, SONG D,et al .Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells[J].Nano Energy,2015,11:756-764. doi:10.1016/j.nanoen.2014.11.054 |
24 | LI Y, LI M, LI R,et al .Linear length-dependent light-harvesting ability of silicon nanowire[J].Optics Communications,2015,355:6-9. doi:10.1016/j.optcom.2015.06.027 |
25 | GAO Z, LIN G, ZHENG Y,et al .Excellent light-capture capability of trilobal SiNW for ultra-high JSC in single-nanowire solar cells[J].Photonics Research,2020,8(6):995-1001. doi:10.1364/prj.385867 |
26 | GAO Z, GAO T, CHEN Y,et al .Silicon nanowire design for ultrahigh extinction by dipole near-field interaction in transparent solar cells[J].The Journal of Physical Chemistry C,2021,125(7):3781-3792. doi:10.1021/acs.jpcc.0c11588 |
27 | GAO Z, GENG Q, WANG Z,et al .Helical SiNW design with a dual-peak response for broadband scattering in translucent solar cells[J].Materials Advances,2022,3(2):953-961. doi:10.1039/d1ma00988e |
28 | 岳晓鹏,赵兴,闫慧琳,等 .基于SnO2电子传输层的n-i-p型钙钛矿太阳能电池关键技术研究[J].发电技术,2023,44(1):63-77. |
YUE X P, ZHAO X, YAN H L,et al .Research of key technologies for n-i-p perovskite solar cells with SnO2 electron transport layer[J].Power Generation Technology,2023,44(1):63-77. | |
29 | CHEN L, GAO Z, ZHENG Y,et al .14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer[J].Solar Energy,2018,174:549-555. doi:10.1016/j.solener.2018.09.035 |
30 | GAO T, GENG Q, GAO Z,et al .Improving junction quality via modifying the Si surface to enhance the performance of PEDOT:PSS/Si hybrid solar cells[J].ACS Applied Energy Materials,2021,4(11):12543-12551. doi:10.1021/acsaem.1c02338 |
31 | GENG Q, WANG Z, GAO Z,et al .Phase separation to improve the conductivity and work function of the PEDOT:PSS solution for silicon hybrid solar cells[J].The Journal of Physical Chemistry C,2021,125(48):26379-26388. doi:10.1021/acs.jpcc.1c08816 |
[1] | Xiao CAI, Yang XU, Chao YANG, Zhangjing ZHENG. A Fast Optimization Algorithm for Fin Structure of Phase Change Thermal Storage [J]. Power Generation Technology, 2022, 43(1): 92-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||