Power Generation Technology ›› 2021, Vol. 42 ›› Issue (6): 682-689.DOI: 10.12096/j.2096-4528.pgt.21096
• Solar Thermal Power Generation Technology • Previous Articles Next Articles
Ding WANG(), Yuxuan CHEN(
), Hu XIAO(
), Yanping ZHANG(
)
Received:
2021-07-30
Published:
2021-12-31
Online:
2021-12-23
Contact:
Yanping ZHANG
Supported by:
CLC Number:
Ding WANG, Yuxuan CHEN, Hu XIAO, Yanping ZHANG. Comparative Analysis of Heat Transfer Characteristics of Conical Cavity Receivers With Different Heat Transfer Fluids[J]. Power Generation Technology, 2021, 42(6): 682-689.
网格数量 | 出口温度/K | 绝对误差/% |
2 423 370 | 860.40 | 0.24 |
3 598 505 | 861.09 | 0.16 |
4 442 491 | 862.60 | 0.00 |
5 630 989 | 862.52 | — |
Tab. 1 Grid independence check
网格数量 | 出口温度/K | 绝对误差/% |
2 423 370 | 860.40 | 0.24 |
3 598 505 | 861.09 | 0.16 |
4 442 491 | 862.60 | 0.00 |
5 630 989 | 862.52 | — |
ϕ/(°) | Qab/W | ηop/% |
0 | 10 387 | 88.21 |
4.12 | 10 347 | 87.88 |
8.23 | 10 318 | 87.62 |
12.35 | 10 308 | 87.54 |
16.46 | 10 293 | 87.42 |
Tab. 2 Total energy absorbed by the cavity and optical efficiency under different cone angles
ϕ/(°) | Qab/W | ηop/% |
0 | 10 387 | 88.21 |
4.12 | 10 347 | 87.88 |
8.23 | 10 318 | 87.62 |
12.35 | 10 308 | 87.54 |
16.46 | 10 293 | 87.42 |
1 | 史洁, 刘晓飞. 新能源功率预测算法优化研究[J]. 发电技术, 2019, 40 (1): 78- 82. |
SHI J , LIU X F . The optimization research approaches for renewable energy output forecasting[J]. Power Generation Technology, 2019, 40 (1): 78- 82. | |
2 | 童家麟, 吕洪坤, 李汝萍, 等. 国内光热发电现状及应用前景综述[J]. 浙江电力, 2019, 38 (12): 25- 30. |
TONG J L , LYU H K , LI R P , et al. Review on status and application prospect of domestic CSP generation[J]. Zhejiang Electric Power, 2019, 38 (12): 25- 30. | |
3 | 佟锴, 杨立军, 宋记锋, 等. 聚光太阳能集热场先进技术综述[J]. 发电技术, 2019, 40 (5): 413- 425. |
TONG K , YANG L J , SONG J F , et al. Review on advanced technology of concentrated solar power concentrators[J]. Power Generation Technology, 2019, 40 (5): 413- 425. | |
4 | KASAEIAN A , KOURAVAND A , RAD M , et al. Cavity receivers in solar dish collectors: a geometric overview[J]. Renewable Energy, 2020, 169 (14): 53- 79. |
5 |
ZOU C Z , ZHANG Y P , FALCOZ Q , et al. Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system[J]. Renewable Energy, 2017, 103, 478- 489.
DOI |
6 |
TAN Y , ZHAO L , BAO J , et al. Experimental investigation on heat loss of semi-spherical cavity receiver[J]. Energy Conversion and Management, 2014, 87, 576- 583.
DOI |
7 |
PAVLOVIC S , LONI R , BELLOS E , et al. Comparative study of spiral and conical cavity receivers for a solar dish collector[J]. Energy Conversion and Management, 2018, 178, 111- 122.
DOI |
8 | DAABO A M , MAHMOUD S , AL-DADAH R K , et al. Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application[J]. Energy, 2017, 119 (15): 523- 539. |
9 | QIU K , YAN L , NI M , et al. Simulation and experimental study of an air tube-cavity solar receiver[J]. Energy Conversion and Management, 2015, 103 (10): 847- 858. |
10 | 郭缝伟. 基于MCRT和FVM方法的碟式太阳能聚光集热系统的光热转换特性数值研究[D]. 重庆: 重庆大学, 2019. |
GUO F W. Numerical study on the light-to-heat conversion characteristics of the dish-type solar energy concentrating and collecting system based on MCRT and FVM methods[D]. Chongqing: Chongqing University, 2019. | |
11 |
BENOIT H , SPREAFICO L , GAUTHIER D , et al. Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: properties and heat transfer coefficients[J]. Renewable and Sustainable Energy Reviews, 2016, 55, 298- 315.
DOI |
12 |
LONI R , ASKARI A , SLI-ARDEH E , et al. Numerical comparison of a solar dish concentrator with different cavity receivers and working fluids[J]. Journal of Cleaner Production, 2018, 198, 1013- 30.
DOI |
13 | 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001: 128- 129. |
TAO W Q . Numerical heat transfer[M]. Xi'an: Xi'an Jiaotong University Press, 2001: 128- 129. | |
14 |
CHU S , BAI F , ZHANG X , et al. Experimental study and thermal analysis of a tubular pressurized air receiver[J]. Renewable Energy, 2018, 125, 413- 424.
DOI |
15 |
ZOU C Z , FENG H Y , ZHANG Y P , et al. Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation[J]. Frontiers in Energy, 2019, 13 (2): 1- 12.
DOI |
16 |
ZHANG Y P , XIAO H , ZOU C Z , et al. Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe[J]. Energy, 2020, 193, 116775.
DOI |
17 |
ZHANG Y P , Chen Y X , ZOU C Z , et al. Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe[J]. Renewable Energy, 2021, 163, 320- 330.
DOI |
18 |
BELLOS E , BOUSI E , TZIVANIDIS C , et al. Optical and thermal analysis of different cavity receiver designs for solar dish concentrators[J]. Energy Conversion and Management X, 2019, 2, 100013.
DOI |
[1] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[2] | Xiaowen WANG, Nan TU, Jiabin FANG, Xiaoqun LIU, Chiyu WANG, Jiachen LIU. Simulation of Optical Performance for a Solar Cavity Receiver Arranged With Spiral Tubes [J]. Power Generation Technology, 2023, 44(2): 221-228. |
[3] | ABD-HAMID Mohamed, Longyu XIA, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Performance Analysis of Photovoltaic/Thermal Hybrid System Integrated With Phase Change Heat Storage Materials [J]. Power Generation Technology, 2023, 44(1): 53-62. |
[4] | Yingfeng LI, Tao ZHANG, Heng ZHANG, Peng CUI, Zaiguo FU, Zhongliang GAO, Qi GENG, Zhihan LIU, Qunzhi ZHU, Hexing LI, Meicheng LI. Efficient and Comprehensive Photovoltaic/Photothermal Utilization Technologies for Solar Energy [J]. Power Generation Technology, 2022, 43(3): 373-391. |
[5] | Yao XIAO, Wenze NIU, Gaosheng WEI, Liu CUI, Xiaoze DU. Review on Research Status and Developing Tendency of Solar Photovoltaic/Thermal Technology [J]. Power Generation Technology, 2022, 43(3): 392-404. |
[6] | Kaiyun ZHENG. Study on Supercritical CO2 Cycle Coal-fired Power Generation System for Low Temperature Scenario [J]. Power Generation Technology, 2022, 43(1): 126-130. |
[7] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[8] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Experimental Analysis of the Influence of Flow Rate on Heat Transfer Characteristics of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2021, 42(6): 665-672. |
[9] | Kai XUE, Yihan WANG, Heng CHEN, Gang XU, Jing LEI. Thermodynamic Performance Analysis of a Parabolic Trough Solar-assisted Biomass-fired Cogeneration System [J]. Power Generation Technology, 2021, 42(6): 653-664. |
[10] | Canghong ZHANG, Nan TU, Jiabin FANG. Study on Thermal Stress of Water/Steam Solar Absorber Tubes Under Unilateral Non-uniform Heat Flux Boundary Conditions [J]. Power Generation Technology, 2021, 42(6): 699-706. |
[11] | Chunxu DU, Yancheng MA, Yanquan WANG, Jihao XIE, Jinkai LIU, Yuanwei LU. Development of Molten Salt Electric Heating Control System Based on Monitor and Control Generated System and Programmable Logic Controller [J]. Power Generation Technology, 2021, 42(6): 727-733. |
[12] | Kaiyun ZHENG. Study on Cold End Temperature Optimization of Supercritical CO2 Cycle [J]. Power Generation Technology, 2021, 42(2): 261-266. |
[13] | Zheyang ZHANG,Xing JU,Xinyu PAN,Yu YANG,Chao XU,Xiaoze DU. Photovoltaic/Concentrated Solar Power Hybrid Technology and Its Commercial Application [J]. Power Generation Technology, 2020, 41(3): 220-230. |
[14] | Kexun LI,Mingzhu ZONG,Gaosheng WEI. Overview of Geothermal Power Generation and Joint Power Generation With Other New Energy Sources [J]. Power Generation Technology, 2020, 41(1): 79-87. |
[15] | Yaowang LI,Shihong MIAO,Binxin YIN,Shixu ZHANG,Songyan ZHANG. Optimal Dispatch Model for Micro Integrated Energy System Considering Multi-carrier Energy Generation Characteristic of Advanced Adiabatic Compressed Air Energy Storage [J]. Power Generation Technology, 2020, 41(1): 41-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||