Power Generation Technology ›› 2021, Vol. 42 ›› Issue (4): 509-516.DOI: 10.12096/j.2096-4528.pgt.21046
• Intelligent Turbine Power Generation Technology • Previous Articles Next Articles
Mei YANG1,2(), Yunlong ZHOU1,*(
), Jinfu YANG2(
), Di WANG1(
), Dongjiang HAN2(
), Jiaxin BAO1(
)
Received:
2021-04-29
Published:
2021-08-31
Online:
2021-07-22
Contact:
Yunlong ZHOU
Supported by:
CLC Number:
Mei YANG, Yunlong ZHOU, Jinfu YANG, Di WANG, Dongjiang HAN, Jiaxin BAO. Optimization of 700℃ Ultra-supercritical Single Reheat Power Generation System[J]. Power Generation Technology, 2021, 42(4): 509-516.
设备 | 模型及参数 |
锅炉 | 飞灰排出的黑箱模型 |
汽轮机 | 排汽压力为0.002 2 MPa |
凝汽器 | 循环冷却水入口温度为10 ℃ |
汽动给水泵 | 等熵效率为85.30%,机械效率为99.80% |
发电机 | 发电机效率为98.98% |
Tab. 1 Simulation parameters and module settings
设备 | 模型及参数 |
锅炉 | 飞灰排出的黑箱模型 |
汽轮机 | 排汽压力为0.002 2 MPa |
凝汽器 | 循环冷却水入口温度为10 ℃ |
汽动给水泵 | 等熵效率为85.30%,机械效率为99.80% |
发电机 | 发电机效率为98.98% |
参数 | 1# | 2# | 3# | 4# | 除氧器 | 6# | 7# | 8# | 9# | 10# |
上端差 | 1.7 | 0 | 0 | 0 | 0 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
下端差 | 5.6 | 5.6 | 5.6 | 5.6 | 0 | 2.6 | 5.6 | — | — | — |
Tab. 2 Terminal temperature difference of regenerative heater ℃
参数 | 1# | 2# | 3# | 4# | 除氧器 | 6# | 7# | 8# | 9# | 10# |
上端差 | 1.7 | 0 | 0 | 0 | 0 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
下端差 | 5.6 | 5.6 | 5.6 | 5.6 | 0 | 2.6 | 5.6 | — | — | — |
参数 | MC系统 | 参比系统 |
发电功率/MW | 1 000 | 1 000 |
主蒸汽压为/MPa | 37.25 | 37.25 |
主蒸汽温度/℃ | 700 | 700 |
主蒸汽进汽量/(t/h) | 2 396.16 | 2 295.85 |
一次再热压力/MPa | 7.47 | 7.47 |
一次再热温度/℃ | 720 | 720 |
一次再热流量/(t/h) | 1 540.35 | 1 893.42 |
额定背压/MPa | 0.002 2 | 0.002 2 |
锅炉给水温度/℃ | 332.9 | 332.9 |
高压缸效率/% | 90.5 | 90.5 |
中压缸效率/% | 93.5 | 93.5 |
低压缸效率/% | 90.0 | 90.0 |
Best-Turbine小汽轮机效率/% | 90.5 | — |
给水泵汽轮机/% | 85 |
Tab. 3 Main parameters of thermal system
参数 | MC系统 | 参比系统 |
发电功率/MW | 1 000 | 1 000 |
主蒸汽压为/MPa | 37.25 | 37.25 |
主蒸汽温度/℃ | 700 | 700 |
主蒸汽进汽量/(t/h) | 2 396.16 | 2 295.85 |
一次再热压力/MPa | 7.47 | 7.47 |
一次再热温度/℃ | 720 | 720 |
一次再热流量/(t/h) | 1 540.35 | 1 893.42 |
额定背压/MPa | 0.002 2 | 0.002 2 |
锅炉给水温度/℃ | 332.9 | 332.9 |
高压缸效率/% | 90.5 | 90.5 |
中压缸效率/% | 93.5 | 93.5 |
低压缸效率/% | 90.0 | 90.0 |
Best-Turbine小汽轮机效率/% | 90.5 | — |
给水泵汽轮机/% | 85 |
参数 | MC系统 | 参比系统 |
主蒸汽进汽量 | 2 476.13 | 2 358.08 |
一次再热流量 | 1 601.60 | 1 948.09 |
低压缸进汽量 | 1 601.60 | 1 494.84 |
1#抽汽量 | 246.11 | 235.13 |
2#抽汽量 | 182.74 | 174.86 |
3#抽汽量 | 115.87 | 84.79 |
4#抽汽量 | 62.87 | 47.79 |
5#抽汽量 | 72.29 | 57.75 |
6#抽汽量 | 162.78 | 131.8 |
7#抽汽量 | 78.46 | 76.00 |
8#抽汽量 | 85.82 | 85.44 |
9#抽汽量 | 74.50 | 72.19 |
10#抽汽量 | 61.16 | 72.15 |
Tab. 4 Main steam water flow parameters t/h
参数 | MC系统 | 参比系统 |
主蒸汽进汽量 | 2 476.13 | 2 358.08 |
一次再热流量 | 1 601.60 | 1 948.09 |
低压缸进汽量 | 1 601.60 | 1 494.84 |
1#抽汽量 | 246.11 | 235.13 |
2#抽汽量 | 182.74 | 174.86 |
3#抽汽量 | 115.87 | 84.79 |
4#抽汽量 | 62.87 | 47.79 |
5#抽汽量 | 72.29 | 57.75 |
6#抽汽量 | 162.78 | 131.8 |
7#抽汽量 | 78.46 | 76.00 |
8#抽汽量 | 85.82 | 85.44 |
9#抽汽量 | 74.50 | 72.19 |
10#抽汽量 | 61.16 | 72.15 |
参数 | MC系统 | 参比系统 |
汽轮发电机组热耗率/[kJ/(kW·h)] | 6 607.50 | 6 633.54 |
热耗降低值/[kJ/(kW·h)] | 26.04 | — |
汽轮机组热效率/% | 54.48 | 54.27 |
锅炉热效率/% | 94.78 | 94.78 |
发电效率/% | 51.38 | 51.18 |
厂用电率/% | 3.9 | 3.9 |
供电效率/% | 49.37 | 49.18 |
供电效率增加值/% | 0.19 | — |
Tab. 5 Thermodynamic performance analysis of 700 ℃ ultra-supercritical single reheat unit
参数 | MC系统 | 参比系统 |
汽轮发电机组热耗率/[kJ/(kW·h)] | 6 607.50 | 6 633.54 |
热耗降低值/[kJ/(kW·h)] | 26.04 | — |
汽轮机组热效率/% | 54.48 | 54.27 |
锅炉热效率/% | 94.78 | 94.78 |
发电效率/% | 51.38 | 51.18 |
厂用电率/% | 3.9 | 3.9 |
供电效率/% | 49.37 | 49.18 |
供电效率增加值/% | 0.19 | — |
参数 | 汽轮机组热耗率/[kJ/(kW·h)] | 热耗降低值/[kJ/(kW·h)] | 汽轮机组热效率/% | 给水温度/℃ | 锅炉热效率/% | 管道效率/% | 发电效率/% | 发电效率增加值/% | 厂用电率/% | 供电效率/% | 供电效率增加值/% | ||
参比系统 | 6 633.54 | — | 54.27 | 332.89 | 94.78 | 99.5 | 51.18 | — | 3.90 | 49.18 | — | ||
优化后系统 | 方案1 | 6 612.82 | 6.15 | 54.43 | 332.89 | 94.78 | 99.5 | 51.34 | 0.05 | 3.90 | 49.34 | 0.16 | |
方案2 | 6 93.41 | 40.13 | 54.60 | 337.60 | 94.78 | 99.5 | 51.49 | 0.31 | 3.90 | 49.48 | 0.30 | ||
方案3 | 6 588.58 | 38.81 | 54.64 | 337.63 | 94.78 | 99.5 | 51.54 | 0.36 | 3.90 | 49.53 | 0.35 | ||
方案4 | 6 584.96 | 48.58 | 54.67 | 337.58 | 94.78 | 99.5 | 51.56 | 0.38 | 3.90 | 49.55 | 0.37 | ||
方案5 | 6 581.35 | 52.19 | 55.70 | 337.13 | 94.78 | 99.5 | 51.59 | 0.41 | 3.90 | 49.58 | 0.40 |
Tab. 6 Thermodynamic performance comparison of different combination schemes
参数 | 汽轮机组热耗率/[kJ/(kW·h)] | 热耗降低值/[kJ/(kW·h)] | 汽轮机组热效率/% | 给水温度/℃ | 锅炉热效率/% | 管道效率/% | 发电效率/% | 发电效率增加值/% | 厂用电率/% | 供电效率/% | 供电效率增加值/% | ||
参比系统 | 6 633.54 | — | 54.27 | 332.89 | 94.78 | 99.5 | 51.18 | — | 3.90 | 49.18 | — | ||
优化后系统 | 方案1 | 6 612.82 | 6.15 | 54.43 | 332.89 | 94.78 | 99.5 | 51.34 | 0.05 | 3.90 | 49.34 | 0.16 | |
方案2 | 6 93.41 | 40.13 | 54.60 | 337.60 | 94.78 | 99.5 | 51.49 | 0.31 | 3.90 | 49.48 | 0.30 | ||
方案3 | 6 588.58 | 38.81 | 54.64 | 337.63 | 94.78 | 99.5 | 51.54 | 0.36 | 3.90 | 49.53 | 0.35 | ||
方案4 | 6 584.96 | 48.58 | 54.67 | 337.58 | 94.78 | 99.5 | 51.56 | 0.38 | 3.90 | 49.55 | 0.37 | ||
方案5 | 6 581.35 | 52.19 | 55.70 | 337.13 | 94.78 | 99.5 | 51.59 | 0.41 | 3.90 | 49.58 | 0.40 |
参数 | 参比系统 | 方案3 | 方案5 |
汽轮机组热耗率/[kJ/(kW·h)] | 6 633.54 | 6 522.92 | 6 488.82 |
热耗降低值/[kJ/(kW·h)] | — | 110.62 | 144.72 |
汽轮机组热效率/% | 54.27 | 55.19 | 55.48 |
锅炉热效率/% | 94.78 | 94.78 | 94.78 |
发电效率/% | 51.18 | 52.05 | 52.32 |
厂用电率/% | 3.90 | 3.90 | 3.90 |
供电效率/% | 49.18 | 50.02 | 50.07 |
供电效率增加值/% | — | 0.84 | 0.89 |
Tab. 7 Thermodynamic performance comparison of scheme 3 and scheme 5 for waste heat utilization
参数 | 参比系统 | 方案3 | 方案5 |
汽轮机组热耗率/[kJ/(kW·h)] | 6 633.54 | 6 522.92 | 6 488.82 |
热耗降低值/[kJ/(kW·h)] | — | 110.62 | 144.72 |
汽轮机组热效率/% | 54.27 | 55.19 | 55.48 |
锅炉热效率/% | 94.78 | 94.78 | 94.78 |
发电效率/% | 51.18 | 52.05 | 52.32 |
厂用电率/% | 3.90 | 3.90 | 3.90 |
供电效率/% | 49.18 | 50.02 | 50.07 |
供电效率增加值/% | — | 0.84 | 0.89 |
1 | 李华杰, 马丽梅. 近年来我国能源投资发展分析[J]. 中外能源, 2018, 23 (1): 3- 13. |
LI H J , MA L M . Analysis on recent development of energy investment in China[J]. Sino-Global Energy, 2018, 23 (1): 3- 13. | |
2 |
李洪言, 赵朔, 刘飞, 等. 2040年世界能源供需展望: 基于《BP世界能源展望(2019年版)》[J]. 天然气与石油, 2019, 37 (6): 1- 8.
DOI |
LI H Y , ZHAO S , LIU F , et al. Analysis on world energy supply & demand outlook in 2040:based on BP world energy prospect (2019 edition)[J]. Natural Gas and Oil, 2019, 37 (6): 1- 8.
DOI |
|
3 | 周云龙, 杨美, 王迪. 1000MW高超超临界二次再热系统优化[J]. 中国电机工程学报, 2018, 38 (S1): 137- 141. |
ZHOU Y L , YANG M , WANG D . Optimization of 1000MW high ultra supercritical double-reheat system[J]. Proceedings of the CSEE, 2018, 38 (S1): 137- 141. | |
4 | BUGGE J , KJAER S , BLUM R . High-efficiency coal-fired power plants development and perspectives[J]. Energy, 2006, 31 (10/11): 1437- 1445. |
5 |
BEER J M . High efficiency electric power generation: the environmental role[J]. Progress in Energy and Combustion Science, 2007, 33 (2): 107- 134.
DOI |
6 |
杨华春, 林富生, 谢锡善, 等. 欧洲700℃发电机组研发及617合金研究进展[J]. 发电设备, 2012, 26 (5): 355- 359.
DOI |
YANG H C , LIN F S , XIE X S , et al. R & D progress of 700℃ power generation technology and alloy 617 in Europe[J]. Power Equipment, 2012, 26 (5): 355- 359.
DOI |
|
7 | WEITZEL P S. Steam generator for advanced ultra supercritical power plants 700C to 760C[C]//ASME Power Conference Collocated with JSME ICOPE. July 12-14, 2011, Denver, Colorado, USA, 2011: 281-291. |
8 |
王旭阳, 吴玉华, 侯栋楠, 等. 700℃高超超临界二次再热机组抽汽参数计算及分析[J]. 汽轮机技术, 2018, 60 (5): 368- 374.
DOI |
WANG X X , WU Y H , HOU D N , et al. Calculation and analysis of extraction steam parameters of the 700℃ ultra-supercritical units with double-reheat cycle[J]. Turbine Technology, 2018, 60 (5): 368- 374.
DOI |
|
9 |
蔡小燕, 张燕平, 李钰, 等. 700℃超超临界燃煤发电机组热力系统设计及分析[J]. 动力工程学报, 2012, 32 (12): 971- 978.
DOI |
CAI X Y , ZHANG Y P , LI Y , et al. Design and exergy analysis on thermodynamic system of a 700℃ ultra supercritical coal-fired power generating set[J]. Journal of Chinese Society of Power Engineering, 2012, 32 (12): 971- 978.
DOI |
|
10 | 杨金福, 张忠孝, 韩东江, 等. 新型超临界参数燃煤发电系统结构设计技术[J]. 发电技术, 2019, 40 (6): 555- 563. |
YANG J F , ZHANG Z X , HAN D J , et al. New supercritical parameter coal-fired power generation system structure design technology[J]. Power Generation Technology, 2019, 40 (6): 555- 563. | |
11 |
WANG D , LI H Y , WANG C N , et al. Thermodynamic analysis of coal-fired power plant based on the feedwater heater drainage-air preheating system[J]. Applied Thermal Engineering, 2021, 185, 116420.
DOI |
12 |
LIN X L , LI Q L , WANG L K , et al. Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000MW double reheat ultra supercritical thermal power plant[J]. Energy, 2020, 201, 117560.
DOI |
13 |
YANG M , ZHOU Y L , WANG D , et al. Thermodynamic cycle analysis and optimization to improve efficiency in a 700℃ ultra-supercritical double reheat system[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141, 83- 94.
DOI |
14 | 胡宏伟, 邓成刚. 两级除氧器热力系统研究[J]. 南方能源建设, 2020, 7 (4): 98- 101. |
HU H W , DENG C G . Research on thermal system with double-deaerator[J]. Southern Energy Construction, 2020, 7 (4): 98- 101. | |
15 |
XU G , ZHOU L Y , ZHOU S F , et al. Optimum superheat utilization of extraction steam in double reheat ultra-supercritical power plants[J]. Applied Energy, 2015, 160, 863- 872.
DOI |
16 |
杨宇. 超超临界1000MW机组梯次循环热力系统能损分析及优化[J]. 热力发电, 2015, 44 (8): 74- 77.
DOI |
YANG Y . Energy loss analysis and optimization on an ultra supercritical 1000MW unit thermal system using echelon cycle[J]. Thermal Power Generation, 2015, 44 (8): 74- 77.
DOI |
|
17 | 段立强, 孙婧, 王振. 二次再热机组不同抽汽过热度热能利用方案性能比较[J]. 工程热物理学报, 2019, 40 (12): 2757- 2762. |
DUAN L Q , SUN Q , WANG Z . Performance comparison of thermal energy utilization schemes of the extraction superheat degree for a double reheat coal-fired power plant[J]. Journal of Engineering Thermophysics, 2019, 40 (12): 2757- 2762. | |
18 | 程辉. 超超临界二次再热1000MW机组回热系统优化[J]. 能源科技, 2020, 18 (2): 47- 50. |
CHENG H . Optimization of regenerative system of 1000MW ultra supercritical double reheat unit[J]. Energy Science and Technology, 2020, 18 (2): 47- 50. | |
19 | 税杨浩, 刘强, 张磊, 等. 650℃超超临界1000MW机组回热系统的参数优化[J]. 工程热物理学报, 2020, 41 (1): 89- 94. |
SHUI Y H , LIU Q , ZHANG L , et al. Parameter optimization of a regenerative system for a 650℃ ultra-supercritical steam turbine[J]. Journal of Engineering Thermophysics, 2020, 41 (1): 89- 94. | |
20 | 阳虹, 余炎, 范世望, 等. 梯次循环(EC)在超超临界1000MW机组工程应用与分析[J]. 热力发电, 2019, 48 (12): 129- 133. |
YANG H , YU Y , FAN S W , et al. Application and analysis of echelon cycle in ultra supercritical 1000MW unit[J]. Thermal Power Generation, 2019, 48 (12): 129- 133. |
[1] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[2] | Huating WANG, Heng CHEN, Gang XU, Jizhen AN. Comparative Evaluation of Energy-Saving Benefits of Flue Gas Waste Heat Utilization Under the Background of Coal Power Upgrading [J]. Power Generation Technology, 2024, 45(1): 90-98. |
[3] | Xiaohui SONG, Heng LIANG, Xinming CHEN, Jianguo PU, Junlin LIAO, Gang WU, Jinliang YIN. Analysis and Application of Fast Closing Boundary Conditions for Governing Valves of 1 000 MW Ultra-supercritical Unit [J]. Power Generation Technology, 2020, 41(6): 689-696. |
[4] | Shaohui REN,Xiaowei HU,Can HU,Yuan ZHAO,Yuefeng LI. Waste Heat Utilization of Biomass Direct-Fired Power Plant in Agriculture [J]. Power Generation Technology, 2020, 41(2): 206-209. |
[5] | Yunchao LI,Dazhou ZHAO,Bo LIU,He ZHANG,Hongtao MA,Xin TIAN. Status and Prospect of Waste Heat Utilization in Power Plant [J]. Power Generation Technology, 2019, 40(3): 270-275. |
[6] | HU Xiu-tao. Methods and Economic Analysis of Waste Heat Recovery From Gas Steam Combined Cycle Waste Heat Boiler Flue Gas [J]. Power Generation Technology, 2017, 38(3): 43-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||