Power Generation Technology ›› 2021, Vol. 42 ›› Issue (4): 454-463.DOI: 10.12096/j.2096-4528.pgt.21031
• Intelligent Turbine Power Generation Technology • Previous Articles Next Articles
Xiangling KONG1(), Jinglun FU1,2,3,4,5(
)
Received:
2021-04-25
Published:
2021-08-31
Online:
2021-07-22
Supported by:
CLC Number:
Xiangling KONG, Jinglun FU. Computer-Vision Based on Three-dimensional Reconstruction Technology and Its Applications in Gas Turbine Industry[J]. Power Generation Technology, 2021, 42(4): 454-463.
项目 | 算法名称 | ||
莫尔等高线法 | 相位法 | 傅里叶变换法 | |
光栅类型 | 主光栅、基准光栅 | 正弦光栅 | 罗奇光栅或正弦光栅 |
优点 | 精度高、鲁棒性强 | 精度较高、速度快 | 精度较高、速度快 |
缺点 | 合成大面积莫尔条纹困难、速度慢 | 易受高频噪声和散斑影响而产生误差 | 易受高频噪声和散斑影响而产生误差 |
适用范围 | 小部件的精密测量 | 大部件的快速测量 | 大部件的快速测量 |
Tab. 1 Comparison of structured-light based on 3D reconstruction algorithms
项目 | 算法名称 | ||
莫尔等高线法 | 相位法 | 傅里叶变换法 | |
光栅类型 | 主光栅、基准光栅 | 正弦光栅 | 罗奇光栅或正弦光栅 |
优点 | 精度高、鲁棒性强 | 精度较高、速度快 | 精度较高、速度快 |
缺点 | 合成大面积莫尔条纹困难、速度慢 | 易受高频噪声和散斑影响而产生误差 | 易受高频噪声和散斑影响而产生误差 |
适用范围 | 小部件的精密测量 | 大部件的快速测量 | 大部件的快速测量 |
1 | 方继辉, 王荣. 重型F级燃气轮机IGV开度对压气机效率的影响[J]. 发电技术, 2020, 41 (3): 317- 319. |
FANG J H , WANG R . Influence of IGV opening degree on the compressor efficiency of MITSUBISHI F4 gas turbine[J]. Power Generation Technology, 2020, 41 (3): 317- 319. | |
2 | BUTIME J, GUTIERREZ I, CORZO L G, et al. 3D reconstruction methods, a survey[C]//Proceedings of the First International Conference on Computer Vision Theory and Applications, 2015: 457-463. |
3 |
CHEN X , LU C , MA M , et al. Color-coding and phase-shift method for absolute phase measurement[J]. Optics Communications, 2013, 298/299, 54- 58.
DOI |
4 |
TAKEDA M , MUTOH K . Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22 (24): 3977- 3982.
DOI |
5 |
FARAJIKHAH S , MADANIPOUR K , SAHARKHIZ S , et al. Shadow moiré aided 3-D reconstruction of fabric drape[J]. Fibers and Polymers, 2012, 13 (7): 928- 935.
DOI |
6 |
IDESAWA M , YATAGAI T , SOMA T . Scanning moiré method and automatic measurement of 3D shapes[J]. Applied Optics, 1977, 16 (8): 2152- 2162.
DOI |
7 |
SRINIVASAN V , LIU H C , HALIOUA M . Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics, 1984, 23 (18): 3105- 3108.
DOI |
8 |
TAVARES P J , VAZ M A . Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry[J]. Optics Communications, 2007, 274 (2): 307- 314.
DOI |
9 | 沈洋, 陈文静. 抽样对复合傅里叶变换轮廓术的影响[J]. 激光技术, 2008, 32 (1): 80- 83. |
SHEN Y , CHEN E J . Influence of sampling on composite Fourier-transform propfilometry[J]. Laser Technology, 2008, 32 (1): 80- 83. | |
10 | HORN B. Shape from shading: a method for obtaining the shape of a smooth opaque object from one view[D]. Cambridge: Massachusetts Institute of Technology, 1970. |
11 | HORN B . Obtaining shape from shading information[M]. New York: McGraw-Hill, 1989: 123- 171. |
12 | 王学梅. 不同成像条件的从明暗恢复形状算法研究[D]. 长沙: 国防科学技术大学, 2009. |
WANG X M. Research on shape recovery algorithm from light and shade under different imaging conditions[D]. Changsha: National University of Defense Technology, 2009. | |
13 | BROOKS M J, HORN B. Shape and source from shading[R]. Cambridge: Massachusetts Institute of Technology, 1985. |
14 | PARAGIOS N , CHEN Y , FAUGERAS O . Handbook of mathematical models in computer vision[M]. New Nork: Springer, 2006: 108- 112. |
15 | 孙玉娟. 基于光学图像的三维重建理论与技术[M]. 北京: 清华大学出版社, 2017: 125- 126. |
SUN Y J . Theory and technology of 3D reconstruction based on optical image[M]. Beijing: Tsinghua University Press, 2017: 125- 126. | |
16 | ROUY E , TOURIN A . A viscosity solutions approach to shape-from-shading[J]. SIAM Journal on Numerical Analysis, 1992, 867- 884. |
17 |
KIMMEL R , BRUCKSTEIN A M . Tracking level sets by level sets: a method for solving the shape from shading problem[J]. Computer Vision and Image Understanding, 1995, 62 (1): 47- 58.
DOI |
18 |
ZHANG R , TSAI P S , CRYER J E , et al. Shape from shading: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (8): 690- 706.
DOI |
19 | PENTLAND A . Shape information from shading: a theory about human perception[J]. Spat Vis, 1989, 4 (2/3): 165- 182. |
20 |
TSAI P , SHAH M . Shape from shading using linear approximation[J]. Image and Vision Computing, 1994, 12 (8): 487- 498.
DOI |
21 |
ZHANG S , NEGAHDARIPOUR S . 3-D shape recovery of planar and curved surfaces from shading cues in underwater images[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (1): 100- 116.
DOI |
22 |
COOPER A P R . A simple shape-from-shading algorithm applied to images of ice-covered terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32 (6): 1196- 1198.
DOI |
23 |
CHO S Y , CHOW T W S . Shape and surface measurement technology by an improved shape-from-shading neural algorithm[J]. IEEE Transactions on Industrial Electronics, 2000, 47 (1): 225- 230.
DOI |
24 | KONG F H. Reconstruction of solder joint surface based on hybrid shape from shading[C]//International Conference on Natural Computation. IEEE Computer Society, 2008: 593-597. |
25 | CASTELAN M, HANCOCK E R. Acquiring height maps of faces from a single image[C]//3D Data Processing, Visualization, and Transmission, International Symposium. IEEE Computer Society. Thessaloniki: IEEE, 2004: 183-190. |
26 |
MCGUNNIGLE G , DONG J . Augmenting photometric stereo with coaxial illumination[J]. IET Computer Vision, 2011, 5 (1): 33- 49.
DOI |
27 | ZHENG Q, CHELLAPPA R. Estimation of illuminant direction, albedo, and shape from shading[C]//IEEE Computer Society Conference on Computer Vision & Pattern Recognition. Maui: IEEE, 2002: 540-545. |
28 | WOODHAM R J . Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1992, 19 (1): 151- 171. |
29 | GEORGHIADES A S , BELHUMEUR P N , KRIEGMAN D J . From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 23 (6): 643- 660. |
30 |
HAYAKAWA H . Photometric stereo under a light source with arbitrary motion[J]. Journal of the Optical Society of America A, 1994, 11 (11): 3079- 3089.
DOI |
31 | PAPADHIMITRI T, FAVARO P. A new perspective on uncalibrated photometric stereo[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 1474-1481. |
32 |
WOODHAM R J . Gradient and curvature from the photometric-stereo method, including local confidence estimation[J]. Journal of the Optical Society of America A, 1994, 11 (11): 3050- 3068.
DOI |
33 |
COLEMAN E N , JAIN R . Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry[J]. Computer Graphics and Image Processing, 1982, 18 (4): 309- 328.
DOI |
34 | HERTZMANN A , SEITZ S M . Example-based photometric stereo: shape reconstruction with general, varying BRDFs[J]. IEEE Computer Society, 2005, 27 (8): 1254- 1264. |
35 |
ZHANG Z . A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (11): 1330- 1334.
DOI |
36 |
CAI J . Integration of optical flow and dynamic programming for stereo matching[J]. IET Image Processing, 2012, 6 (3): 205- 212.
DOI |
37 | ANSARI M E, MAZOUL A, BENSRHAIR A, et al. A real-time spatio-temporal stereo matching for road applications[C]//International IEEE Conference on Intelligent Transportation Systems. Washington: IEEE, 2011: 1483-1488. |
38 |
STOJAKOVIC V , TEPAVCEVIC B . Image-based modeling approach in creating 3D morphogenetic reconstruction of Liberty Square in Novi Sad[J]. Journal of Cultural Heritage, 2011, 12 (1): 105- 110.
DOI |
39 |
CALAKLI F , TAUBIN G . SSD: smooth signed distance surface reconstruction[J]. Computer Graphics Forum, 2011, 30 (7): 1993- 2002.
DOI |
40 |
MAURICIO K , YUSHI G , TUKI T , et al. Robust 3D image reconstruction of pancreatic cancer tumors from histopathological images with different stains and its quantitative performance evaluation[J]. International Journal of Computer Assisted Radiology and Surgery, 2019, 14 (12): 2047- 2055.
DOI |
41 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, 2015. |
42 | ZHONG Z, JIN L, XIE Z, et al. High performance offline handwritten Chinese character recognition using googlenet and directional feature maps[C]//Proceeding of the 201513th International Conference on Document Analysis and Recognition (ICDAR). Tunis, Tunisia, 2015: 846-850. |
43 | HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016. |
44 | FAVALLI M , FORNACIAI A , ISOLA I , et al. Multiview 3D reconstruction in geosciences[J]. Computers & Geosciences, 2012, 44, 168- 176. |
45 | FAN H, HAO S, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 605-613. |
46 | CHOY C B, XU D, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[C]//Proceeding of the European Conference on Computer Vision. 2016. |
47 | PAN J, LI J, HAN X, et al. Residual meshnet: learning to deform meshes for single-view 3D reconstruction[C]//Proceeding of the 2018 International Conference on 3D Vision, 2018. |
48 |
RUAN C , YU T , CHEN F , et al. Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence[J]. Energy, 2019, 170, 744- 751.
DOI |
49 | WANG Q , ZHANG Y . Spark characteristics investigation of a gas turbine igniter[J]. Combustion Science and Technology, 2012, 184 (10/12): 1526- 1540. |
50 |
HUANG J , LIU H , WANG Q , et al. Limited-projection volumetric tomography for time-resolved turbulent combustion diagnostics via deep learning[J]. Aerospace Science and Technology, 2020, 106, 106123.
DOI |
[1] | Zeyang CUI, Xiangling KONG, Jinglun FU, Jiajun SHI. An Image-Based Turbine Blade Parameter Inspection Method [J]. Power Generation Technology, 2024, 45(1): 106-112. |
[2] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[3] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[4] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[5] | Jiangang HAO, Wenming GONG, Yang DING, Danwei ZHENG, Yong LIU. Analysis on Combustion Instability Characteristics of Model Swirl Combustor With Gas Fuel [J]. Power Generation Technology, 2022, 43(6): 927-934. |
[6] | Yunfeng JIN, Chao LIU, Gaofeng DENG, Yunlong GUAN, Jiangang HAO, Haizhou HUANG, Dongxiang JIANG. Cost Benefit Analysis for Maintenance Strategy of Gas Turbine Inlet Filtration System [J]. Power Generation Technology, 2022, 43(1): 119-125. |
[7] | Mingliang BAI, Dongxue ZHANG, Jinfu LIU, Jiao LIU, Daren YU. Anomaly Detection of Gas Turbine Hot Components Based on Deep Autoencoder and Support Vector Data Description [J]. Power Generation Technology, 2021, 42(4): 422-430. |
[8] | Bin QIU, Jinglun FU. Research Status of Gas Turbine Exhaust Diffuser [J]. Power Generation Technology, 2021, 42(4): 437-446. |
[9] | Kai WEI, Zhong LUO, Yonghang SUN, Yu WANG. Analysis of Internal Flow Characteristics of Gas Turbine Ejector Mixer with Valve Plate [J]. Power Generation Technology, 2021, 42(4): 431-436. |
[10] | Hua ZHU, Biao YAN, Yusong LIU, Liang LI. Study on Humid Air Turbine Cooling Technique [J]. Power Generation Technology, 2021, 42(4): 412-421. |
[11] | Jin GUAN, Zongze HE, Xiaojing LÜ, Yiwu WENG. Experimental Study on Startup of 30kW Micro Gas Turbine Generator Set [J]. Power Generation Technology, 2021, 42(4): 404-411. |
[12] | Yunfeng JIN, Chao LIU, Gaofeng DENG, Yunlong GUAN, Xin TIAN, Haizhou HUANG, Dongxiang JIANG. Research on Modeling Method of Gas Turbine Inlet Pressure Loss [J]. Power Generation Technology, 2021, 42(4): 395-403. |
[13] | Youhua HUANG, Shanwei MA, Ji LIU, Zhenghua WU. Optimization Design and Engineering Application of Gas Turbine SCR Denitrification System [J]. Power Generation Technology, 2021, 42(3): 350-356. |
[14] | Kejia HU, Jun ZHANG, Tianyu ZHANG, Lixin GAO. Harmonic Analysis of H Class Gas Turbine Generator Starting With Static Frequency Converter Based on Matlab/Simulink Simulation [J]. Power Generation Technology, 2020, 41(6): 697-705. |
[15] | Jihui FANG,Rong WANG. Influence of IGV Opening Degree on the Compressor Efficiency of MITSUBISHI F4 Gas Turbine [J]. Power Generation Technology, 2020, 41(3): 317-319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||