Power Generation Technology ›› 2021, Vol. 42 ›› Issue (5): 561-567.DOI: 10.12096/j.2096-4528.pgt.20008
• Carbon Neutrality • Previous Articles Next Articles
Received:
2020-11-24
Published:
2021-10-31
Online:
2021-10-13
Contact:
Xiuyuan YANG
Supported by:
CLC Number:
Xiaobo CHEN, Xiuyuan YANG. Research on Charging-Discharging Control Strategy of Electric Vehicles Considering Wind Power Consumption in Ubiquitous Power Internet of Things[J]. Power Generation Technology, 2021, 42(5): 561-567.
电动汽车数量/辆 | 适应度/GW |
50 | 25.715 |
100 | 23.103 |
150 | 17.628 |
200 | 15.839 |
250 | 12.014 |
300 | 13.021 |
Tab. 1 Adaptability with different numbers of EVs
电动汽车数量/辆 | 适应度/GW |
50 | 25.715 |
100 | 23.103 |
150 | 17.628 |
200 | 15.839 |
250 | 12.014 |
300 | 13.021 |
电动汽车数量/辆 | 低谷功率/kW | 高峰功率/kW | 峰谷差/kW |
50 | 7 735 | 11 290 | 3 555 |
100 | 7 958 | 11 120 | 3 162 |
150 | 8 090 | 11 040 | 2 950 |
200 | 8 370 | 10 800 | 2 430 |
250 | 8 600 | 10 740 | 2 140 |
300 | 8 605 | 10 860 | 2 255 |
Tab. 2 Peak, valley power and peak-valley difference after different numbers of EVs connected to the grid
电动汽车数量/辆 | 低谷功率/kW | 高峰功率/kW | 峰谷差/kW |
50 | 7 735 | 11 290 | 3 555 |
100 | 7 958 | 11 120 | 3 162 |
150 | 8 090 | 11 040 | 2 950 |
200 | 8 370 | 10 800 | 2 430 |
250 | 8 600 | 10 740 | 2 140 |
300 | 8 605 | 10 860 | 2 255 |
电动车数量/辆 | 用电低谷改善情况/% | 用电高峰改善情况/% | 用电峰谷差改善情况/% | |||||||
与原负荷相比 | 与前一种电动汽车数量参与调节相比 | 与原负荷相比 | 与前一种电动汽车数量参与调节相比 | 与原负荷相比 | 与前一种电动汽车数量参与调节相比 | |||||
50 | 2.25 | - | 1.42 | - | 9.28 | - | ||||
100 | 5.19 | 2.88 | 2.97 | 1.51 | 22.87 | 11.05 | ||||
150 | 6.94 | 1.66 | 3.71 | 0.72 | 31.69 | 6.70 | ||||
200 | 10.64 | 3.46 | 6.02 | 2.17 | 59.88 | 17.63 | ||||
250 | 13.68 | 2.75 | 6.61 | 0.56 | 81.54 | 11.93 | ||||
300 | 13.75 | 0.06 | 5.43 | -1.12 | 72.28 | -5.37 |
Tab. 3 Improvement effect of grid power fluctuations after different numbers of EVs connected to the grid
电动车数量/辆 | 用电低谷改善情况/% | 用电高峰改善情况/% | 用电峰谷差改善情况/% | |||||||
与原负荷相比 | 与前一种电动汽车数量参与调节相比 | 与原负荷相比 | 与前一种电动汽车数量参与调节相比 | 与原负荷相比 | 与前一种电动汽车数量参与调节相比 | |||||
50 | 2.25 | - | 1.42 | - | 9.28 | - | ||||
100 | 5.19 | 2.88 | 2.97 | 1.51 | 22.87 | 11.05 | ||||
150 | 6.94 | 1.66 | 3.71 | 0.72 | 31.69 | 6.70 | ||||
200 | 10.64 | 3.46 | 6.02 | 2.17 | 59.88 | 17.63 | ||||
250 | 13.68 | 2.75 | 6.61 | 0.56 | 81.54 | 11.93 | ||||
300 | 13.75 | 0.06 | 5.43 | -1.12 | 72.28 | -5.37 |
1 | 周刚, 肖斐, 艾芊, 等. 考虑风电接入的电网静态电压安全域计算[J]. 电力工程技术, 2020, 39 (3): 23- 29. |
ZHOUG G , XIAO F , AI Q , et al. Calculation of power grid static voltage security region considering wind power integration[J]. Electric Power Engineering Technology, 2020, 39 (3): 23- 29. | |
2 |
陈池瑶, 陈晓明. 基于清洁能源消纳的风电规模入网机组启停间歇控制研究[J]. 电网与清洁能源, 2020, 36 (9): 100- 104.
DOI |
CHEN C Y , CHEN X M . A study on start-stop intermittent control of large-scale wind power units based on clean energy absorption[J]. Power System and Clean Energy, 2020, 36 (9): 100- 104.
DOI |
|
3 |
任德江, 吴杰康, 毛骁, 等. 考虑风电消纳的综合能源系统源荷协调运行优化方法[J]. 智慧电力, 2019, 47 (9): 37- 44.
DOI |
REN D J , WU J K , MAO X , et al. Optimal method for source-load coordinated operation of integrated energy system considering wind power absorption[J]. Smart Power, 2019, 47 (9): 37- 44.
DOI |
|
4 | 童小娇, 尹昆, 刘亚娟, 等. 包含可控负荷的微电网经济调度[J]. 电力自动化设备, 2015, 34 (10): 21- 36. |
TONG X J , YIN K , LIU Y J , et al. Economic dispatch for microgrid with controllable loads[J]. Electric Power Automation Equipment, 2015, 35 (10): 21- 36. | |
5 |
陈小梅. 风能与水能互补发电系统的研究[J]. 能源与节能, 2014, 105 (6): 69- 71.
DOI |
CHEN X M . Research on the wind-hydro complementary power generating system[J]. Energy and Conservation, 2014, 105 (6): 69- 71.
DOI |
|
6 | 樊新东, 杨秀媛, 金鑫城. 风电场有功功率控制综述[J]. 发电技术, 2018, 39 (3): 268- 276. |
FAN X D , YANG X Y , JIN X C . An overview of active power control in wind farms[J]. Power Generation Technology, 2018, 39 (3): 268- 276. | |
7 | 杨秀媛, 裘微江, 金鑫城, 等. 改进K近邻算法在风功率预测及风水协同运行中的应用[J]. 电网技术, 2018, 42 (3): 772- 778. |
YANG X Y , QIU W J , JIN X C , et al. Wind power prediction based on improved k-nearest neighbor algorithm and its application in co-operation of wind and hydro powers[J]. Power System Technology, 2018, 42 (3): 772- 778. | |
8 |
江岳春, 何钟南, 刘爱玲. 基于改进BBO算法的风电-水电互补优化运行策略[J]. 电力系统保护与控制, 2018, 46 (10): 39- 47.
DOI |
JIANG Y C , HE Z N , LIU A L . A complementary optimal operation strategy of wind power-hydropower based on improved biogeography-based optimization algorithm[J]. Power System Protection and Control, 2018, 46 (10): 39- 47.
DOI |
|
9 | 杨秀媛, 陈麒宇, 王蒙, 等. 考虑网络约束的风电水电协同果蝇优化控制[J]. 中国电机工程学报, 2017, 37 (18): 5286- 5293. |
YANG X Y , CHEN Q Y , WANG M , et al. Cooperating control for wind farm and hydro power plant based on the fruit fly optimization[J]. Proceedings of the CSEE, 2017, 37 (18): 5286- 5293. | |
10 | 徐韵, 颜湘武. 含可再生分布式电源参与调控的配电网动态分区实时无功优化方法[J]. 现代电力, 2020, 37 (1): 42- 51. |
XU Y , YAN X W . Dynamic partitioning real-time reactive power optimization method for distribution network with renewable distributed generators participating in regulation[J]. Modern Electric Power, 2020, 37 (1): 42- 51. | |
11 | 董浩, 王宁, 陈堂龙, 等. 计及多类型交易的新能源与火电实时协调控制策略[J]. 现代电力, 2020, 37 (1): 60- 66. |
DONG H , WANG N , CHEN T L , et al. Real-time coordinated control strategy for new energy and thermal power that takes into account spot transactions[J]. Modern Electric Power, 2020, 37 (1): 60- 66. | |
12 | 王毅, 陈启鑫, 张宁, 等. 5G通信与泛在电力物联网的融合: 应用分析与研究展望[J]. 电网技术, 2019, 43 (5): 1575- 1585. |
WANG Y , CHEN Q X , ZHANG N , et al. Fusion of the 5G communication and the ubiquitous electric internet of things: application analysis and research prospects[J]. Power System Technology, 2019, 43 (5): 1575- 1585. | |
13 |
王晓冰, 杨金双, 李伟, 等. 面向大型城市综合体的泛在电力物联网建设思路[J]. 电气技术, 2020, 21 (2): 71- 76.
DOI |
WANG X B , YANG J S , LI W , et al. Thoughts on the construction of ubiquitous power internet of things for large-scale urban complexes[J]. Electrical Engineering, 2020, 21 (2): 71- 76.
DOI |
|
14 | 赵善俊, 樊彦国, 李大鹏, 等. 泛在电力物联网在电网生产作业安全管控工作中的应用实践[J]. 电气时代, 2019, (12): 41- 44. |
ZHAO S J , FAN Y G , LI D P , et al. Application and practice of ubiquitous power internet of things in safety management and control of power grid production operations[J]. Electric Age, 2019, (12): 41- 44. | |
15 | 杨秀媛, 刘凤鸣, 陈麒宇, 等. 利益驱动的泛在电力物联网[J]. 现代电力, 2020, 37 (1): 1- 9. |
YANG X Y , LIU F M , CHEN Q Y , et al. Profit-driven ubiquitous power internet of things[J]. Modern Electric Power, 2020, 37 (1): 1- 9. | |
16 | 蒋燕萍, 陈佩军, 陈海燕. 电动汽车集约型换电设施的设计研究[J]. 发电技术, 2019, 40 (6): 535- 539. |
JIANGY P , CHEN P J , CHEN H Y . Research and design on intensive power exchange facility of electric vehicles[J]. Power Generation Technology, 2019, 40 (6): 535- 539. | |
17 | 贺瑜环, 杨秀媛, 陈麒宇, 等. 电动汽车智能充放电控制与应用综述[J]. 发电技术, 2021, 42 (2): 180- 192. |
HE Y H , YANG X Y , CHEN Q Y , et al. Review of intelligent charging and discharging control and application of electric vehicles[J]. Power Generation Technology, 2021, 42 (2): 180- 192. | |
18 | 陈宇, 彭潇, 丁婧, 等. 电动汽车参与风电场输出功率波动平抑方法研究[J]. 发电技术, 2019, 40 (1): 91- 98. |
CHEN Y , PENG X , DING J , et al. Research on the method of stabilizing the power output fluctuation of wind farm by electric vehicles[J]. Power Generation Technology, 2019, 40 (1): 91- 98. | |
19 |
刘伟佳, 吴秋伟, 文福拴, 等. 电动汽车和可控负荷参与配电系统阻塞管理的市场机制[J]. 电力系统自动化, 2014, 38 (24): 26- 33.
DOI |
LIU W J , WU Q W , WEN F S , et al. A market mechanism for participation of electric vehicles and dispatchable loads in distribution system congestion management[J]. Automation of Electric Power Systems, 2014, 38 (24): 26- 33.
DOI |
|
20 |
黄贵鸿, 雷霞, 杨毅, 等. 考虑风电与用户满意度的电动汽车两层智能充放电策略[J]. 电工技术学报, 2015, 30 (5): 85- 97.
DOI |
HUANG G H , LEI X , YANG Y , et al. Two-layer smart charge-discharge strategies for electric vehicles considering wind generation and users' satisfaction[J]. Transactions of China Electrotechnical Society, 2015, 30 (5): 85- 97.
DOI |
[1] | Dan ZHOU, Zhi YUAN, Ji LI, Wei FAN. An Advanced Fuzzy Control Strategy for Hybrid Energy Storage Systems Considering Smoothing of Wind Power Fluctuations at Future Moments [J]. Power Generation Technology, 2024, 45(3): 412-422. |
[2] | Junhui LI, Guohang CHEN, Teng MA, Cuiping LI, Xingxu ZHU, Chen JIA. Optimal Control Strategy of Peak Shaving of Flow Battery Energy Storage System Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(3): 434-447. |
[3] | Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU. Energy Storage Configuration Considering the System Wind Power Reserve Capacity Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(2): 260-272. |
[4] | Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks [J]. Power Generation Technology, 2024, 45(2): 323-330. |
[5] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[6] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[7] | Jun JIA, Weihao FAN, Zhipeng LÜ, Jianguang YAO, Shan ZHOU, Jian WANG, Jintao ZHANG. Research on Startup of DC Transformer for Electric Vehicle Cluster Grid-Connection [J]. Power Generation Technology, 2023, 44(6): 875-882. |
[8] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[9] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[10] | Jian YANG, Yu LIU, Kunpeng HUANG, Yazhou LUO, Siqing NIU, Wei WANG, Jiafei HUAN, Lei ZHANG, Pei ZHANG, Huawei LI. A Method for Estimating Available Power of Wind Farms by Considering the Power Generation Conditions and Station Losses [J]. Power Generation Technology, 2023, 44(2): 235-243. |
[11] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[12] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
[13] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[14] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[15] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||