发电技术 ›› 2024, Vol. 45 ›› Issue (2): 250-259.DOI: 10.12096/j.2096-4528.pgt.23137
蒋海威1, 高明明1, 李杰1, 于浩洋1, 岳光溪2, 黄中2
收稿日期:
2023-10-30
出版日期:
2024-04-30
发布日期:
2024-04-29
通讯作者:
高明明
作者简介:
基金资助:
Haiwei JIANG1, Mingming GAO1, Jie LI1, Haoyang YU1, Guangxi YUE2, Zhong HUANG2
Received:
2023-10-30
Published:
2024-04-30
Online:
2024-04-29
Contact:
Mingming GAO
Supported by:
摘要:
为探究生物质振动炉排炉的炉内燃烧特性,实现机组燃烧过程的控制优化,通过对生物质燃料特性以及燃烧机理的分析,建立炉排炉燃烧过程的机理模型,研究炉排燃料量的动态变化,并预测炉膛温度、烟气含氧量等关键参数,探讨炉排的周期性振动对炉内燃烧状态的影响。结果表明:炉排燃料量与当前给料速度、燃料燃烧速度相关,且燃料在炉排上有较大的存储量,导致燃料着火燃烧与当前给料存在较大的迟延;炉膛温度与烟气含氧量的预测值能较好地跟随实测值的变化,其变化情况与燃烧特性一致;炉排的周期性振动会引起炉内燃烧状态的周期性变化,当炉排振动时,燃料燃烧速度、炉膛温度、炉膛压力都会随之升高,而烟气含氧量则有所降低,随着炉排的停振,这些参数又恢复到稳态水平。
中图分类号:
蒋海威, 高明明, 李杰, 于浩洋, 岳光溪, 黄中. 生物质振动炉排炉燃烧过程建模及动态特性分析[J]. 发电技术, 2024, 45(2): 250-259.
Haiwei JIANG, Mingming GAO, Jie LI, Haoyang YU, Guangxi YUE, Zhong HUANG. Modeling and Dynamic Characteristic Analysis of Combustion Process of Biomass Vibrating Grate Furnace[J]. Power Generation Technology, 2024, 45(2): 250-259.
元素分析 | 工业分析 | |||||||
---|---|---|---|---|---|---|---|---|
Car | Har | Oar | Nar | Sar | FCar | Var | Mar | Aar |
41.52 | 4.12 | 24.60 | 1.70 | 0.13 | 2.75 | 69.32 | 14.20 | 13.73 |
表1 入炉燃料元素分析及工业分析 (%)
Tab. 1 Elemental analysis and industrial analysis of fuel in furnace
元素分析 | 工业分析 | |||||||
---|---|---|---|---|---|---|---|---|
Car | Har | Oar | Nar | Sar | FCar | Var | Mar | Aar |
41.52 | 4.12 | 24.60 | 1.70 | 0.13 | 2.75 | 69.32 | 14.20 | 13.73 |
1 | 黄畅,颜逸贤,白尧,等 .促进风电消纳的太阳能-燃煤热电联产系统性能研究[J].中国电力,2022,55(5):182-188. |
HUANG C, YAN Y X, BAI Y,et al .Performance analysis of solar-coal cogeneration system for wind power consumption[J].Electric Power,2022,55(5):182-188. | |
2 | 尚勇,王喆,严欢,等 .“双碳”背景下陕西新型电力系统研究探索[J].电网与清洁能源,2023,39(12):20-27. |
SHANG Y, WANG Z, YAN H,et al .Research exploration of Shaanxi new type power system in the background of “dual carbon”[J].Power System and Clean Energy,2023,39(12):20-27. | |
3 | 杜维柱,白恺,李海波,等 .兼顾保供电/消纳的源荷储灵活性资源优化规划[J].电力建设,2023,44(9):13-23. |
DU W Z, BAI K, LI H B,et al .Source-load-storage flexible resource optimization planning that takes into account power supply and accommodation[J].Electric Power Construction,2023,44(9):13-23. | |
4 | 苏步芸,王诗超 .新型电力系统背景下新能源送出合理消纳率研究[J].南方能源建设,2023,10(6):43-50. |
SU B Y, WANG S C .Research on reasonable consumption rate of new energy transmission under the new power system[J].Southern Energy Construction,2023,10(6):43-50. | |
5 | 张智光,倪秋龙,廖培,等 .计及新能源消纳的地区电网无功电压优化控制策略[J].浙江电力,2023,42(1):46-53. |
ZHANG Z G, NI Q L, LIAO P,et al .An optimal reactive voltage control strategy for regional power grids considering new energy consumption[J].Zhejiang Electric Power,2023,42(1):46-53. | |
6 | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of china’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
7 | 张开萍,高明明,龙江,等 .生物质直燃式循环流化床锅炉燃烧系统建模及预测研究[J].动力工程学报,2023,43(4):452-460. |
ZHANG K P, GAO M M, LONG J,et al .Modeling and prediction of biomass direct fired circulating fluidized bed boiler combustion system[J].Journal of Chinese Society of Power Engineering,2023,43(4):452-460. | |
8 | 郑妍,姚宣,陈训强 .生物质气化耦合发电体系的合成气组分与能量分析[J].发电技术,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 |
ZHENG Y, YAO X, CHEN X Q .Analysis of syngas components and energy in biomass gasification coupled power generation system[J].Power Generation Technology,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 | |
9 | 周义,张守玉,郎森,等 .煤粉炉掺烧生物质发电技术研究进展[J].洁净煤技术,2022,28(6):26-34. |
ZHOU Y, ZHANG S Y, LANG S,et al .Research progress of biomass blending technology in pulverized coal furnace for power generation[J].Clean Coal Technology,2022,28(6):26-34. | |
10 | 冯伟忠,李励 .“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 |
FENG W Z, LI L .Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under “double carbon” targets[J].Power Generation Technology,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 | |
11 | 金安,李建华,高明,等 .生物质发电技术研究与应用进展[J].能源研究与利用,2022(5):19-24. doi:10.3969/j.issn.1001-5523.2022.05.004 |
JIN A, LI J H, GAO M,et al .Research and application progress of biomass power generation technology[J].Energy Research & Utilization,2022(5):19-24. doi:10.3969/j.issn.1001-5523.2022.05.004 | |
12 | 蒋大龙 .生物质燃料干燥和燃烧特性研究[D].北京:华北电力大学,2013. |
JIANG D L .Research on drying and burning characteristics of biomass fuel[D].Beijing:North China Electric Power University,2013. | |
13 | 苏现强,马仑,方庆艳,等 .基于一次风精细配风的生物质炉排炉燃烧数值模拟[J/OL].中国电机工程学报:1-11[2023-07-03]. . |
SU X Q, MA L, FANG Q Y,et al .Numerical simulation research on combustion of biomass-fired grate boiler based on refined primary air distribution [J/OL].Proceedings of the CSEE:1-11[2023-07-03]. . | |
14 | 陈维茜 .生物质炉排炉燃烧燃尽特性数值模拟研究[D].济南:山东大学,2022. |
CHEN W X .Numerical simulation research on burnout characteristics of biomass grate furnace[D].Jinan:Shandong University,2022. | |
15 | 朱琎琦,牛晓凡,肖显斌 .基于改良BP神经网络的生物质锅炉飞灰含碳量预测模型研究[J].可再生能源,2020,38(2):150-157. doi:10.3969/j.issn.1671-5292.2020.02.003 |
ZHU J Q, NIU X F, XIAO X B .Prediction models of the carbon content of fly ash in a biomass boiler based on improved BP neural networks[J].Renewable Energy Resources,2020,38(2):150-157. doi:10.3969/j.issn.1671-5292.2020.02.003 | |
16 | 罗永浩,张敏,邓睿渠,等 .生物质层燃锅炉低NO x 燃烧技术的研究[J].动力工程学报,2018,38(12):957-964. |
LUO Y H, ZHANG M, DENG R Q,et al .Study of the low NO x combustion technology for biomass-fired grate boilers[J].Journal of Chinese Society of Power Engineering,2018,38(12):957-964. | |
17 | 茅建波,张晓龙,李剑,等 .生物质直燃炉排炉运行问题分析与燃烧调整[J].锅炉技术,2022,53(2):35-39. doi:10.3969/j.issn.1672-4763.2022.02.006 |
MAO J B, ZHANG X L, LI J,et al .Analysis of operation problems and firing regulation of a biomass direct-fired grate furnace[J].Boiler Technology,2022,53(2):35-39. doi:10.3969/j.issn.1672-4763.2022.02.006 | |
18 | 陈刚,康顺顺,赵坤,等 .生物质燃烧过程中结焦、积灰及腐蚀形成机理及其抑制剂开发研究进展[J].新能源进展,2022,10(4):305-315. doi:10.3969/j.issn.2095-560X.2022.04.003 |
CHEN G, KANG S S, ZHAO K,et al .Recent advances in the formation mechanism of slagging,fouling,and corrosion during biomass combustion and the development of inhibitors[J].Advances in New and Renewable Energy,2022,10(4):305-315. doi:10.3969/j.issn.2095-560X.2022.04.003 | |
19 | BERMÚDEZ C A, PORTEIRO J, VARELA L G,et al .Three-dimensional CFD simulation of a large-scale grate-fired biomass furnace[J].Fuel Processing Technology,2020,198:106219. doi:10.1016/j.fuproc.2019.106219 |
20 | SHIEHNEJADHESAR A, MEHRABIAN R, HOCHENAUER C,et al .The virtual biomass grate furnace:an overall CFD model for biomass combustion plants[J].Energy Procedia,2017,120:516-523. doi:10.1016/j.egypro.2017.07.189 |
21 | 张锦晖 .生物质炉排炉燃烧特性及NO x 排放的数值模拟[D].广州:华南理工大学,2020. |
ZHANG J H .Numerical simulation of combustion characteristic and NO x emission in biomass-fired grate boiler[D].Guangzhou:South China University of Technology,2020. | |
22 | 贾卫卫,黄杰,陆燕宁,等 .燃料对生物质炉排炉燃烧特性影响的数值模拟研究[J].浙江电力,2020,39(7):80-87. |
JIA W W, HUANG J, LU Y N,et al .Numerical simulation of the effect of fuel on combustion characteristics of grate biomass boiler[J].Zhejiang Electric Power,2020,39(7):80-87. | |
23 | RAZMJOO N, HERMANSSON S, MORGALLA M,et al .Study of the transient release of water vapor from a fuel bed of wet biomass in a reciprocating-grate furnace[J].Journal of the Energy Institute,2019,92(4):843-854. doi:10.1016/j.joei.2018.06.014 |
24 | 赵小军,孙锦余,薛东发,等 .混合生物质燃料循环流化床锅炉受热面结焦机理研究[J].洁净煤技术,2021,27(4):117-122. |
ZHAO X J, SUN J Y, XUE D F,et al .Study on slagging mechanism of multiple biomass co-combustion on heating surface in a circulating fluidized bed boiler[J].Clean Coal Technology,2021,27(4):117-122. | |
25 | 陆燕宁,章洪涛,许岩韦,等 .烟气再循环对生物质炉排炉燃烧影响的数值模拟[J].浙江大学学报(工学版),2019,53(10):1898-1906. |
LU Y N, ZHANG H T, XU Y W,et al .Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J].Journal of Zhejiang University (Engineering Science),2019,53(10):1898-1906. | |
26 | 王泽鹏 .轻型燃机与生物质炉排炉耦合系统研究[J].电力勘测设计,2021(3):56-60. |
WANG Z P .Study on coupling system of light gas turbine and biomass grate boiler[J].Electric Power Survey & Design,2021(3):56-60. | |
27 | VAKKILAINEN E K .Direct and grate firing of biomass[M]//Steam Generation from Biomass.Amsterdam:Elsevier,2017:203-210. doi:10.1016/b978-0-12-804389-9.00009-5 |
28 | 张建春,顾君苹,张缦,等 .纯燃生物质循环流化床锅炉设计与运行[J].锅炉技术,2018,49(1):28-32. doi:10.3969/j.issn.1672-4763.2018.01.006 |
ZHANG J C, GU J P, ZHANG M,et al .The design and operation of a pure biomass-fired circulating fluidized bed boiler[J].Boiler Technology,2018,49(1):28-32. doi:10.3969/j.issn.1672-4763.2018.01.006 | |
29 | 杨秀媛,王乐,祁鲲,等 .生物质振动炉排锅炉模型仿真研究[J].中国电机工程学报,2009,29(S1):101-107. |
YANG X Y, WANG L, QI K,et al .Simulation of biomass vibrating-grate boiler[J].Proceedings of the CSEE,2009,29(S1):101-107. | |
30 | 包绍麟,杨召,刘丰怀,等 .130 t/h超高压带再热生物质直燃CFB锅炉设计与运行[J].工业锅炉,2021(6):24-26. |
BAO S L, YANG Z, LIU F H,et al .Design and operation of one 130 t/h CFB boiler with ultra-high pressure,reheat and biomass direct combustion[J].Industrial Boilers,2021(6):24-26. | |
31 | 牟犇,高明明,洪烽,等 .循环流化床锅炉机组变负荷过程能量变迁研究[J].动力工程学报,2017,37(12):945-949. doi:10.3969/j.issn.1674-7607.2017.12.001 |
MOU B, GAO M M, HONG F,et al .Research on energy conversion of a CFD boiler unit during load change process[J].Journal of Chinese Society of Power Engineering,2017,37(12):945-949. doi:10.3969/j.issn.1674-7607.2017.12.001 | |
32 | 高明明,刘博通,张开萍,等 .生物质循环流化床锅炉床温动态模型研究[J].热力发电,2023,52(4):72-81. |
GAO M M, LIU B T, ZHANG K P,et al .Study on dynamic bed temperature model of biomass circulating fluidized bed boiler[J].Thermal Power Generation,2023,52(4):72-81. | |
33 | XU Y, ZHAI M, JIN S,et al .Numerical simulation of high-temperature fusion combustion characteristics for a single biomass particle[J].Fuel Processing Technology,2019,183:27-34. doi:10.1016/j.fuproc.2018.10.024 |
[1] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[2] | 李延兵, 贾树旺, 张军亮, 符悦, 刘明, 严俊杰. 汽轮机高位布置超超临界燃煤发电系统变工况㶲经济性分析[J]. 发电技术, 2024, 45(1): 69-78. |
[3] | 杨旸, 李耀强, 张金琦. 基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J]. 发电技术, 2023, 44(5): 712-721. |
[4] | 安吉振, 郑福豪, 刘一帆, 陈衡, 徐钢. 基于大数据分析的火电机组引风机故障预警研究[J]. 发电技术, 2023, 44(4): 557-564. |
[5] | 苏靖程, 王志强, 屈江江, 张凯. 基于BP神经网络和支持向量回归的燃煤电厂空气预热器压差预测[J]. 发电技术, 2023, 44(4): 550-556. |
[6] | 杨旸, 郭德三, 李耀强, 张金琦. 燃气轮机贫预混多旋流组合燃烧室头部结构设计[J]. 发电技术, 2023, 44(2): 183-192. |
[7] | 张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究[J]. 发电技术, 2023, 44(2): 143-154. |
[8] | 樊昂, 李录平, 张世海, 欧阳敏南, 文贤馗, 陈尚年. 大型风电机组塔筒动力学特性与寿命损耗研究进展[J]. 发电技术, 2022, 43(3): 421-430. |
[9] | 刘福国, 刘科, 王守恩. 基于机会约束的电厂混煤煤质和成本的Pareto前沿[J]. 发电技术, 2022, 43(1): 160-167. |
[10] | 戴春喜, 梁平, 车德勇, 刘海婷. 蜂窝管湿式电除尘器内部流动特性研究[J]. 发电技术, 2022, 43(1): 155-159. |
[11] | 赵峰, 孙明兴, 郝哲峰, 车德勇. 基于计算颗粒流体力学的旋风分离器结构优化[J]. 发电技术, 2021, 42(5): 637-642. |
[12] | 张一驰, 李志强, 王喆, 周勤勇, 郭瑾程, 姜山, 李宝昕, 赵刚. 基于频域、时域分析的新一代调相机与STATCOM对比及适用场景研究[J]. 发电技术, 2021, 42(1): 69-77. |
[13] | 郑开云. 超临界二氧化碳循环发电技术应用[J]. 发电技术, 2020, 41(4): 399-406. |
[14] | 李养俊,何子春,张强,涂伟. 火力发电厂电能质量测试与评估分析[J]. 发电技术, 2018, 39(2): 135-139. |
[15] | 余小敏, 祝广场, 张锷. 火力发电厂控制系统平衡回路逻辑思路与设计[J]. 发电技术, 2017, 38(2): 26-29,33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||