发电技术 ›› 2024, Vol. 45 ›› Issue (2): 207-215.DOI: 10.12096/j.2096-4528.pgt.22117
郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢
收稿日期:
2023-07-06
出版日期:
2024-04-30
发布日期:
2024-04-29
通讯作者:
陈衡
作者简介:
基金资助:
Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU
Received:
2023-07-06
Published:
2024-04-30
Online:
2024-04-29
Contact:
Heng CHEN
Supported by:
摘要:
新能源发电在出力和发电负荷上具有波动大、不稳定的特点,为解决新能源机组上网后带来的上述问题,利用多种热电解耦方式对火电机组进行改造,并对不同技术路径进行对比分析,探究火电机组解耦潜力与调峰能力。采用EBSILON Professional软件进行模拟仿真,对不同热电解耦方案下调峰负荷空间进行评估和对比分析。计算结果表明,低压缸零出力热电解耦改造方案可以使机组的调峰能力得到最大的改善。在原最大供热负荷304.60 MW下,最小发电量下降172.21 MW,最低电负荷率下降32.70%。火电机组经过热电解耦改造可显著提高热电机组与新能源机组的协调调峰能力,提高发电单元整体发电的稳定性。
中图分类号:
郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢. 深度调峰背景下火电机组热电解耦技术路径对比分析[J]. 发电技术, 2024, 45(2): 207-215.
Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU. Analysis on Thermoelectric Decoupling Technology Paths for Thermal Power Units Under the Background of Deep Peak-Shaving[J]. Power Generation Technology, 2024, 45(2): 207-215.
参数 | 数值 |
---|---|
主蒸汽温度/℃ | 538.00 |
主蒸汽压力/MPa | 16.67 |
主蒸汽流量/(t/h) | 937.35 |
再热蒸汽温度/℃ | 538.00 |
再热蒸汽压力/MPa | 3.32 |
再热蒸汽流量/(t/h) | 783.57 |
额定背压/kPa | 14.00 |
给水温度/℃ | 272.20 |
额定功率/MW | 300.00 |
表1 案例机组THA工况下基本热力学参数
Tab. 1 Basic thermodynamic parameters of THA operating condition of the case unit
参数 | 数值 |
---|---|
主蒸汽温度/℃ | 538.00 |
主蒸汽压力/MPa | 16.67 |
主蒸汽流量/(t/h) | 937.35 |
再热蒸汽温度/℃ | 538.00 |
再热蒸汽压力/MPa | 3.32 |
再热蒸汽流量/(t/h) | 783.57 |
额定背压/kPa | 14.00 |
给水温度/℃ | 272.20 |
额定功率/MW | 300.00 |
参数 | 设计值 | 计算值 | 相对误差/% |
---|---|---|---|
主蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
主蒸汽压力/MPa | 16.67 | 16.67 | 0.00 |
主蒸汽流量/(t/h) | 937.35 | 937.35 | 0.00 |
再热蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
再热蒸汽压力/MPa | 3.32 | 3.32 | -0.06 |
再热蒸汽流量/(t/h) | 783.57 | 782.37 | -0.15 |
额定背压/kPa | 14.00 | 14.00 | 0.00 |
给水温度/℃ | 272.20 | 272.24 | 0.02 |
额定功率/MW | 300.00 | 301.50 | 0.50 |
热耗/[kJ/(kW·h)] | 8 182.40 | 8 065.60 | -1.43 |
表2 模型验证结果
Tab. 2 Model verification results
参数 | 设计值 | 计算值 | 相对误差/% |
---|---|---|---|
主蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
主蒸汽压力/MPa | 16.67 | 16.67 | 0.00 |
主蒸汽流量/(t/h) | 937.35 | 937.35 | 0.00 |
再热蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
再热蒸汽压力/MPa | 3.32 | 3.32 | -0.06 |
再热蒸汽流量/(t/h) | 783.57 | 782.37 | -0.15 |
额定背压/kPa | 14.00 | 14.00 | 0.00 |
给水温度/℃ | 272.20 | 272.24 | 0.02 |
额定功率/MW | 300.00 | 301.50 | 0.50 |
热耗/[kJ/(kW·h)] | 8 182.40 | 8 065.60 | -1.43 |
图6 低压缸零出力改造最低电负荷率与案例机组对比
Fig. 6 Comparison between the minimum electric load rate of zero output transformation of low pressure cylinder and the case unit
图7 高背压下联合乏汽供热改造最低电负荷率与案例机组对比
Fig. 7 Comparison between the minimum electric load rate of the combined steam heating with high back pressure transformation and the case unit
图9 不同热电解耦改造方案下最大抽汽热负荷增量对比
Fig. 9 Comparison diagram of maximum extraction heat load increment under different thermoelectric decoupling transformation modes
1 | YUAN S, DAI C, GUO A,et al .A novel multi-objective robust optimization model for unit commitment considering peak load regulation ability and temporal correlation of wind powers[J].Electric Power Systems Research,2019,169:115-123. doi:10.1016/j.epsr.2018.12.032 |
2 | 吕志盛,闫立伟,罗艾青,等 .新能源发电并网对电网电能质量的影响研究[J].华东电力,2012,40(2):251-256. |
LV Z S, YAN L W, LUO A Q,et al .Impact of new energy power grid-integration on grid power quality[J].East China Electric Power,2012,40(2):251-256. | |
3 | 宣文博,李慧,刘忠义,等 .一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J].发电技术,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 |
XUAN W B, LI H, LIU Z Y,et al .A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J].Power Generation Technology,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 | |
4 | 杨立滨,张磊,刘艳章,等 .基于分布式框架的新能源场站并网性能评估[J].电力建设,2022,43(5):137-144. doi:10.12204/j.issn.1000-7229.2022.05.015 |
YANG L B, ZHANG L, LIU Y Z,et al .Grid-connection performance evaluation of renewable energy station under distributed framework[J].Electric Power Construction,2022,43(5):137-144. doi:10.12204/j.issn.1000-7229.2022.05.015 | |
5 | HOWLADER H O R, SEDIQI M M, IBRAHIMI A M,et al .Optimal thermal unit commitment for solving duck curve problem by introducing CSP,PSH and demand response[J].IEEE Access,2018,6:4834-4844. doi:10.1109/access.2018.2790967 |
6 | SHI Y, LI Y, ZHOU Y,et al .Optimal scheduling for power system peak load regulation considering short-time startup and shutdown operations of thermal power unit[J].International Journal of Electrical Power & Energy Systems,2021,131:107012. doi:10.1016/j.ijepes.2021.107012 |
7 | 于国强,刘克天,胡尊民,等 .大规模新能源并网下火电机组深度调峰优化调度[J].电力工程技术, 2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 |
YU G Q, LIU K T, HU Z M,et al .Optimal scheduling of deep peak regulation for thermal power units in power grid with large-scale new energy[J].Electric Power Engineering Technology,2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 | |
8 | LEVIHN F .CHP and heat pumps to balance renewable power production:lessons from the district heating network in Stockholm[J].Energy,2017,137:670-678. doi:10.1016/j.energy.2017.01.118 |
9 | 祝令凯,王为帅,张海静,等 .自备电厂在未来综合能源领域的应用展望[J].山东电力技术,2022,49(2):12-16. doi:10.3969/j.issn.1007-9904.2022.02.003 |
ZHU L K, WANG W S, ZHANG H J,et al .Application prospect of self-contained power plant in the future comprehensive energy field[J].Shandong Electric Power,2022,49(2):12-16. doi:10.3969/j.issn.1007-9904.2022.02.003 | |
10 | 张慧帅 .600 MW热电联产机组利用热网蓄能特性的灵活性研究[D].北京:华北电力大学,2019. doi:10.15407/fm26.01.197 |
ZHANG H S .Research on flexibility of 600 MW cogeneration units using thermal network energy storage characteriistics[D].Beijing:North China Electric Power University,2019. doi:10.15407/fm26.01.197 | |
11 | 武进 .冷热电联供系统热电解耦方案及性能分析[D].北京:华北电力大学,2021. |
WU J .Thermoelectric decoupling scheme and performance analysis of combined cooling heating and power system[D].Beijing:North China Electric Power University,2021. | |
12 | 朱泓逻 .基于Ebsilon的火电厂热力系统建模、监测及优化研究[D].北京:清华大学,2015. |
ZHU H L .The research of modeling,monitoring and optimizing for thermal system of thermal power plant based on ebsilon[D].Beijing:Tsinghua University,2015. | |
13 | LIU M, MA G, WANG S,et al .Thermo-economic comparison of heat-power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub[J].Renewable and Sustainable Energy Reviews,2021,152:111715. doi:10.1016/j.rser.2021.111715 |
14 | 李树明,刘青松,朱小东,等 .350 MW超临界热电联产机组灵活性改造分析[J].发电技术,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 |
LI S M, LIU Q S, ZHU X D,et al .Flexibility transformation analysis of 350 MW supercritical cogeneration unit[J].Power Generation Technology,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 | |
15 | 王林,伍刚,张亚夫,等 .1 000 MW深度调峰机组热力系统优化研究[J].发电技术,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 |
WANG L, WU G, ZHANG Y F,et al .Thermodynamic system optimization research on 1 000 MW deep peak-regulating unit[J].Power Generation Technology,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 | |
16 | 唐树芳,王丰吉,唐郭安,等 .200 MW热电联产机组火电灵活性供热改造分析[J].工程技术研究,2022,7(6):110-112. |
TANG S F, WANG F J, TANG G A,et al .Analysis of thermal power flexible heating retrofit for 200 MW cogeneration units[J].Engineering Technology Study,2022,7(6):110-112. | |
17 | 薛永明,池晓,张秋丹 .电厂循环冷却水余热供暖方式的经济性分析[C]//2019供热工程建设与高效运行研讨会(上海).2019:208-214. |
XUE Y M, CHI X, ZHANG Q D .Economic benefit analysis of several methods of utilizing circulating cooling water in heating system in power plant[C]//2019 Seminar on Construction and Efficient Operation of Heat Supply Projects(Shanghai).2019:208-214. | |
18 | 陈建国,谢争先,付怀仁,等 .300 MW机组汽轮机低压缸零出力技术[J].热力发电,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 |
CHEN J G, XIE Z X, FU H R,et al .Zero output technology of the low-pressure cylinder of 300 MW unit turbine[J].Thermal Power Generation,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 | |
19 | ZHAO X, LI A, ZHANG Y,et al .Performance improvement of low-pressure cylinder in high back pressure steam turbine for direct heating[J].Applied Thermal Engineering,2021,182:116170. doi:10.1016/j.applthermaleng.2020.116170 |
20 | 鄂志君,张利,杨帮宇,等 .低压缸零出力实现热电联产机组热电解耦与节能的理论研究[J].汽轮机技术,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 |
E Z J, ZHANG L, YANG B Y,et al .Theoretical study on heat-electricity decoupling and energy saving of low-pressure cylinder zero output renovation of heat and power cogeneration units[J].Turbine Technology,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 | |
21 | 张猛 .深度调峰工况下供热机组状态监测与控制优化[D].北京:华北电力大学,2020. |
ZHANG M .Condition monitoring and optimization of control system for heating units under deep peak load regulation[D].Beijing:North China Electric Power University,2020. | |
22 | CHEN H, XIAO Y, XU G,et al .Energy-saving mechanism and parametric analysis of the high back-pressure heating process in a 300 MW coal-fired combined heat and power unit[J].Applied Thermal Engineering,2019,149:829-840. doi:10.1016/j.applthermaleng.2018.12.001 |
23 | ZHAO S, DU X, GE Z,et al .Cascade utilization of flue gas waste heat in combined heat and power system with high back-pressure (CHP-HBP) [J].Energy Procedia,2016,104:27-31. doi:10.1016/j.egypro.2016.12.006 |
24 | 肖瑶 .高背压供热机组节能分析与运行优化[D].北京:华北电力大学,2019. |
XIAO Y .Energy-saving analysis and operation optimization of the high back-pressure heating process in a combined heat and power unit[D].Beijing:North China Electric Power University,2019. | |
25 | 郭小丹,胡三高,杨昆,等 .热泵回收电厂循环水余热利用问题研究[J].现代电力,2010,27(2):58-61. doi:10.3969/j.issn.1007-2322.2010.02.014 |
GUO X D, HU S G, YANG K,et al .Research on waste heat recovery of circulating water in power plant by heat pump technology[J].Modern Electric Power,2010,27(2):58-61. doi:10.3969/j.issn.1007-2322.2010.02.014 | |
26 | 吴佐莲,刘小春,王萌,等 .利用热泵技术回收热电厂余热的可行性与经济性分析[J].山东农业大学学报(自然科学版),2008,39(1):62-68. |
WU Z L, LIU X C, WANG M,et al .The feasibility and economy analysis of the usage of the heat pump technique to reclaim waste heat in heat power plant[J].Joumal of Shandong Agiculcural University (Natrural Science),2008,39(1):62-68. | |
27 | 张虎,巩志强 .两种热泵回收循环水热量的经济性分析[J].山东电力技术,2022,49(3):71-75. doi:10.3969/j.issn.1007-9904.2022.03.013 |
ZHANG H, GONG Z Q .Economic analysis on recycling water heat by two kinds of heat pump[J].Shandong Electric Power,2022,49(3):71-75. doi:10.3969/j.issn.1007-9904.2022.03.013 | |
28 | JIANG J, HU B, GE T,et al .Comprehensive selection and assessment methodology of compression heat pump system[J].Energy,2022,241:122831. doi:10.1016/j.energy.2021.122831 |
[1] | 刘旺, 陈连, 龚高阳, 李智华, 薛文华, 石金刚, 谢军, 李雷雷, 姚荣财, 王召鹏, 杨延西, 邓毅, 张晨辉. 基于数字孪生的空气预热器预测性维护模式研究[J]. 发电技术, 2024, 45(4): 622-632. |
[2] | 丁湧. 1 000 MW超超临界燃煤锅炉深度调峰研究[J]. 发电技术, 2024, 45(3): 382-391. |
[3] | 陈晓峰, 左川, 赵宁, 黄凯, 王惠杰. 集成蓄热装置的火电机组调峰特性分析[J]. 发电技术, 2024, 45(3): 392-400. |
[4] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
[5] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[6] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[7] | 贾志军, 范伟, 任少君, 魏唐斌. 600 MW亚临界机组长时间深度调峰燃烧稳定性研究[J]. 发电技术, 2024, 45(2): 216-225. |
[8] | 李展, 杨振勇, 刘磊, 陈振山, 季卫鸣, 洪烽. 火电机组深度调峰工况下炉侧蓄热系数对一次调频能力的影响分析[J]. 发电技术, 2024, 45(2): 226-232. |
[9] | 杨正, 孙亦鹏, 温志强, 程亮, 李战国. 深度调峰工况下超临界机组的干湿态转换策略研究[J]. 发电技术, 2024, 45(2): 233-239. |
[10] | 于松源, 张峻松, 元志伟, 房方. 计及热惯性的热电联产虚拟电厂韧性提升策略[J]. 发电技术, 2023, 44(6): 758-768. |
[11] | 安吉振, 郑福豪, 刘一帆, 陈衡, 徐钢. 基于大数据分析的火电机组引风机故障预警研究[J]. 发电技术, 2023, 44(4): 557-564. |
[12] | 吴磊, 彭黎菊, 李爽, 史翊翔, 蔡宁生. 百千瓦级天然气制氢质子交换膜燃料电池热电联产系统稳态特性模拟分析[J]. 发电技术, 2023, 44(3): 350-360. |
[13] | 黄宇箴, 陈彦奇, 吴志聪, 徐钢, 刘彤. 碳中和背景下热电联产机组抽汽分配节能优化[J]. 发电技术, 2023, 44(1): 85-93. |
[14] | 楚帅, 王爱华, 葛维春, 李音璇, 崔岱. 电网调控集中式储热降低弃风率分析方法[J]. 发电技术, 2023, 44(1): 18-24. |
[15] | 王志云, 赵玉柱, 王学栋, 张元舒. 调峰机制下供热汽轮机中压调门调节特性试验研究[J]. 发电技术, 2022, 43(6): 970-976. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||