发电技术 ›› 2022, Vol. 43 ›› Issue (6): 892-900.DOI: 10.12096/j.2096-4528.pgt.22011
刘晓明1, 谭祖贶2, 袁振华1, 刘玉田2
收稿日期:
2022-01-20
出版日期:
2022-12-31
发布日期:
2023-01-03
作者简介:
基金资助:
Xiaoming LIU1, Zukuang TAN2, Zhenhua YUAN1, Yutian LIU2
Received:
2022-01-20
Published:
2022-12-31
Online:
2023-01-03
Supported by:
摘要:
随着海上风电的大规模开发,合适的海上风电柔性直流并网位置更有利于其优势的发挥。针对大规模海上风电经柔性直流接入陆地电网的并网选址,通过分析其并网主要影响因素,提出风电消纳能力、电网电压稳定性、并网点脆弱度和建设成本的评估指标。基于信息熵和模糊层次分析法,建立综合赋权模型确定各指标权重,提出并网点综合优化评估方法。某海上风电接入山东电网的仿真结果表明,所提方法增强了风电消纳能力,提高了电网安全稳定性。
中图分类号:
刘晓明, 谭祖贶, 袁振华, 刘玉田. 柔性直流接入海上风电并网选址综合优化[J]. 发电技术, 2022, 43(6): 892-900.
Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current[J]. Power Generation Technology, 2022, 43(6): 892-900.
编号 | 名称 | 电压等级/kV | 有功负载/MW | 无功负载/(MV⋅A) |
---|---|---|---|---|
1 | QX | 525 | 600 | 205 |
2 | MP | 525 | 600 | 113 |
3 | KY | 525 | 253 | 139 |
4 | CY | 230 | 79.34 | 12 |
5 | ZB | 230 | 122.3 | -0.62 |
6 | YT | 230 | 210 | 21 |
7 | ZL | 230 | 166.4 | 14.58 |
8 | HW | 230 | 8.435 | -9.89 |
9 | MT | 230 | -6.31 | -4 |
10 | NH | 230 | 61 | 15.2 |
11 | GC | 230 | 40.58 | -1 |
12 | HH | 230 | -18.9 | 13.5 |
13 | DJ | 230 | 151.6 | -10 |
14 | LT | 230 | 61.76 | 11 |
15 | QJ | 230 | 34.4 | 3.8 |
16 | FL | 230 | 68.6 | 12 |
17 | ZQ | 230 | 35.4 | 16.5 |
表1 山东东部部分母线负荷数据
Tab. 1 Load data of buses in eastern Shandong
编号 | 名称 | 电压等级/kV | 有功负载/MW | 无功负载/(MV⋅A) |
---|---|---|---|---|
1 | QX | 525 | 600 | 205 |
2 | MP | 525 | 600 | 113 |
3 | KY | 525 | 253 | 139 |
4 | CY | 230 | 79.34 | 12 |
5 | ZB | 230 | 122.3 | -0.62 |
6 | YT | 230 | 210 | 21 |
7 | ZL | 230 | 166.4 | 14.58 |
8 | HW | 230 | 8.435 | -9.89 |
9 | MT | 230 | -6.31 | -4 |
10 | NH | 230 | 61 | 15.2 |
11 | GC | 230 | 40.58 | -1 |
12 | HH | 230 | -18.9 | 13.5 |
13 | DJ | 230 | 151.6 | -10 |
14 | LT | 230 | 61.76 | 11 |
15 | QJ | 230 | 34.4 | 3.8 |
16 | FL | 230 | 68.6 | 12 |
17 | ZQ | 230 | 35.4 | 16.5 |
并网点 | 风电消纳C1 | VSC电压支撑C2 | 风电功率波动C3 | 并网点脆弱度C4 | 建设成本C5 |
---|---|---|---|---|---|
6 | 0.930 9 | 0 | 1.000 0 | 1.000 0 | 0.555 5 |
9 | 0.367 8 | 0.666 7 | 0 | 0.444 4 | 0.666 6 |
13 | 0 | 0.980 4 | 1.000 0 | 0 | 0 |
14 | 1.000 0 | 0.616 3 | 1.000 0 | 0.925 9 | 1.000 0 |
表2 标准化后各可选并网点指标值
Tab. 2 Index values of optional access points after standardization
并网点 | 风电消纳C1 | VSC电压支撑C2 | 风电功率波动C3 | 并网点脆弱度C4 | 建设成本C5 |
---|---|---|---|---|---|
6 | 0.930 9 | 0 | 1.000 0 | 1.000 0 | 0.555 5 |
9 | 0.367 8 | 0.666 7 | 0 | 0.444 4 | 0.666 6 |
13 | 0 | 0.980 4 | 1.000 0 | 0 | 0 |
14 | 1.000 0 | 0.616 3 | 1.000 0 | 0.925 9 | 1.000 0 |
权重类型 | 风电消纳C1 | VSC电压支撑C2 | 风电功率波动C3 | 并网点脆弱度C4 | 建设成本C5 |
---|---|---|---|---|---|
客观权重 | 0.224 9 | 0.190 8 | 0.177 3 | 0.210 2 | 0.196 8 |
主观权重 | 0.280 0 | 0.260 0 | 0.200 0 | 0.150 0 | 0.110 0 |
综合权重 | 0.252 5 | 0.225 4 | 0.189 6 | 0.180 1 | 0.153 4 |
表3 各计算指标权重
Tab. 3 Weight of each evaluation index
权重类型 | 风电消纳C1 | VSC电压支撑C2 | 风电功率波动C3 | 并网点脆弱度C4 | 建设成本C5 |
---|---|---|---|---|---|
客观权重 | 0.224 9 | 0.190 8 | 0.177 3 | 0.210 2 | 0.196 8 |
主观权重 | 0.280 0 | 0.260 0 | 0.200 0 | 0.150 0 | 0.110 0 |
综合权重 | 0.252 5 | 0.225 4 | 0.189 6 | 0.180 1 | 0.153 4 |
并网点 | 6 | 9 | 13 | 14 |
---|---|---|---|---|
分值 | 0.690 0 | 0.425 4 | 0.410 6 | 0.901 2 |
表4 各并网点得分
Tab. 4 Score of each optional access point
并网点 | 6 | 9 | 13 | 14 |
---|---|---|---|---|
分值 | 0.690 0 | 0.425 4 | 0.410 6 | 0.901 2 |
并网点 | 电压波动平均值/pu | 电压波动最大值/pu |
---|---|---|
6 | 0.003 66 | 0.010 3 |
9 | 0.007 92 | 0.045 2 |
13 | 0.001 73 | 0.004 4 |
14 | 0.001 18 | 0.002 9 |
表5 电压波动结果
Tab. 5 Results of voltage fluctuation
并网点 | 电压波动平均值/pu | 电压波动最大值/pu |
---|---|---|
6 | 0.003 66 | 0.010 3 |
9 | 0.007 92 | 0.045 2 |
13 | 0.001 73 | 0.004 4 |
14 | 0.001 18 | 0.002 9 |
1 | Global Wind Energy Council .GWEC global wind report 2021[EB/OL].(2021-03-25)[2021-12-01].. |
2 | 中国国家能源局 .国家能源局2021年一季度网上新闻发布会文字实录[EB/OL].(2021-01-30)[2021-12-01].. |
National Energy Administration .Transcript of the online press conference of the China National Energy Administration in the first quarter of 2021[EB/OL].(2021-01-30)[2021-12-01].. | |
3 | SOARES-RAMOS E, OLIVEIRA-ASSIS L, SARRIAS-MENA R,et al .Current status and future trends of offshore wind power in Europe Energy[J].Energy,2020,202:117787. doi:10.1016/j.energy.2020.117787 |
4 | 唐巍,郭雨桐,闫姝,等 .多场景海上风电场关键设备技术经济性分析[J].中国电力,2021,54(7):178-184. |
TANG W, GUO Y T, YAN S,et al .Techno-economic analysis of key equipment for offshore wind farms with multiple scenarios[J].Electric Power,2021,54(7):178-184. | |
5 | 余潇,卜广全,王姗姗 .风电经柔直孤岛送出交流暂态过电压抑制策略研究[J].发电技术,2022,43(4):618-625. doi:10.12096/j.2096-4528.pgt.21023 |
YU X, BU G Q, WANG S S .Research on transient AC overvoltage suppression strategy of islanded wind power transmission via VSC-HVDC[J].Power Generation Technology,2022,43(4):618-625. doi:10.12096/j.2096-4528.pgt.21023 | |
6 | 杨仁炘,施刚,蔡旭,等 .风电场柔性直流并网控制保护技术现状与展望[J].南方电网技术,2019,13(3):48-57. doi:10.1049/iet-rpg.2019.0332 |
YANG R X, SHI G, CAI X,et al .Present situation and prospect of the control and protection technology for flexible DC integration of wind farm[J].Southern Power System Technology,2019,13(3):48-57. doi:10.1049/iet-rpg.2019.0332 | |
7 | 李卫东,贺鸿鹏 .考虑风电消纳的源-荷协同优化调度策略[J].发电技术,2020,41(2):126-130. doi:10.12096/j.2096-4528.pgt.18266 |
LI W D, HE H P .Source-load cooperative optimization dispatch strategy considering wind power accommodation[J].Power Generation Technology,2020,41(2):126-130. doi:10.12096/j.2096-4528.pgt.18266 | |
8 | 刘天浩,朱元振,孙润稼,等 .极端自然灾害下电力信息物理系统韧性增强策略[J].电力系统自动化,2021,45(3):40-48. doi:10.7500/AEPS20200430020 |
LIU T H, ZHU Y Z, SUN R J,et al .Resilience-enhanced strategy for cyber-physical power system under extreme natural disasters[J].Automation of Electric Power Systems,2021,45(3):40-48. doi:10.7500/AEPS20200430020 | |
9 | 李湘旗,周洋,章德,等 .VSC-HVDC线路接入点选址及容量优化配置方法[J].电力自动化设备,2020,40(12):113-118. |
LI X Q, ZHOU Y, ZHANG D,et al .Method of access point selection and capacity optimal configuration for VSC-HVDC line[J].Electric Power Automation Equipment,2020,40(12):113-118. | |
10 | LI Y, QIAO X, CHEN C,et al .Integrated optimal siting and sizing for VSC-HVDC-link-based offshore wind farms and shunt capacitors[J].Journal of Modern Power Systems and Clean Energy,2021,9(2):274-284. doi:10.35833/mpce.2018.000538 |
11 | VITTAL E, KEANE A .Identification of critical wind farm locations for improved stability and system planning[J].IEEE Transactions on Power Systems,2013,28(3):2950-2958. doi:10.1109/tpwrs.2012.2235470 |
12 | MA X, SUN Y, FANG H,et al .Scenario-based multi objective decision-making of optimal access point for wind power transmission corridor in the load centers[J].IEEE Transactions on Sustainable Energy,2013,4(1):229-239. doi:10.1109/tste.2012.2214791 |
13 | 卞志鹏,徐政,肖亮,等 .柔性直流送出的海上风电场接入点选择方法[J].高电压技术,2018,44(7):2189-2195. |
BIAN Z P, XU Z, XIAO L,et al .Method for choosing access point of offshore wind farm transmitted by VSC-HVDC system[J].High Voltage Engineering,2018,44(7):2189-2195. | |
14 | PAN J, NUQUI R, SRIVASTAVA K,et al .AC grid with embedded VSC-HVDC for secure and efficient power delivery[C]//IEEE Energy 2030 Conference.Atlanta,GA,USA:IEEE,2008:1-6. |
15 | AIK D, ANDERSSON G .Fundamental analysis of voltage and power stability of single-infeed voltage-source converter HVDC systems[J].IEEE Transactions on Power Delivery,2019,34(1):365-375. doi:10.1109/tpwrd.2018.2874335 |
16 | URQUIDEZ O, XIE L .Singular value sensitivity based optimal control of embedded VSC-HVDC for steady-state voltage stability enhancement[J].IEEE Transactions on Power Systems,2016,31(1):216-225. doi:10.1109/tpwrs.2015.2393253 |
17 | 李强,李凤婷,樊艳芳,等 .风电并网对接入地区电压的影响[J].中国电力,2012,45(4):15-18. doi:10.3969/j.issn.1004-9649.2012.04.004 |
LI Q, LI F T, FAN Y F,et al .Voltage influence of wind power integration[J].Electric Power,2012,45(4):15-18. doi:10.3969/j.issn.1004-9649.2012.04.004 | |
18 | 倪良华,闻佳妍,张晓莲,等 .基于受冲击与断开后果脆弱度的电网关键线路识别[J].电力系统保护与控制,2020,48(1):81-87. |
NI L H, WEN J Y, ZHANG X L,et al .Critical lines identification in power grid based on vulnerability of line under impact and disconnection consequence[J].Power System Protection and Control,2020,48(1):81-87. | |
19 | MOEINI A, KAMWA I, MONTIGNY DE M,et al .Application of battery energy storage for network vulnerability mitigation[C]//2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D).Dallas,USA:IEEE,2016:1-5. doi:10.1109/tdc.2016.7519928 |
20 | 朱凌志,陈宁,韩华玲 .风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34. |
ZHU L Z, CHEN N, HAN H L .Key problems and solutions of wind power accommodation[J].Automation of Electric Power Systems,2011,35(22):29-34. | |
21 | 牛东晓,李建锋,魏林君,等 .跨区电网中风电消纳影响因素分析及综合评估方法研究[J].电网技术,2016,40(4):1087-1093. |
NIU D X, LI J F, WEI L J,et al .Study on technical factors analysis and overall evaluation method regarding wind power integration in trans-provincial power grid[J].Power System Technology,2016,40(4):1087-1093. | |
22 | 舒印彪,张智刚,郭剑波,等 .新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9. |
SHU Y B, ZHANG Z G, GUO J B,et al .Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-9. | |
23 | 钱卫华,姚建刚,龙立波,等 .基于短期相关性和负荷增长的中长期负荷预测[J].电力系统自动化,2007(11):59-64. doi:10.3321/j.issn:1000-1026.2007.11.013 |
QIAN W H, YAO J G, LONG L B,et al .Short-term correlation and annual growth based mid-long term load forecasting[J].Automation of Electric Power Systems,2007(11):59-64. doi:10.3321/j.issn:1000-1026.2007.11.013 | |
24 | FONSÊCA T Q, RIBEIRO R L A, ROCHA T O A,et al .Voltage grid supporting by using variable structure adaptive virtual impedance for LCL-voltage source converter DG converters[J].IEEE Transactions on Industrial Electronics,2020,67(11):9326-9336. doi:10.1109/tie.2019.2952784 |
25 | 姜涛,李国庆,贾宏杰,等 .电压稳定在线监控的简化L指标及其灵敏度分析方法[J].电力系统自动化,2012,36(21):13-18. |
JIANG T, LI G Q, JIA H J,et al .Simplified L-index and its sensitivity analysis method for on-line monitoring of voltage stability control[J].Automation of Electric Power Systems,2012,36(21):13-18. | |
26 | 朱星阳,张建华,刘文霞,等 .风电并网引起电网电压波动的评价方法及应用[J].电工技术学报,2013,28(5):88-98. doi:10.3969/j.issn.1000-6753.2013.05.012 |
ZHU X Y, ZHANG J H, LIU W X,et al .Evaluation methodology and its application of voltage fluctuation in power network caused by interconnected wind power[J].Transactions of China Electrotechnical Society,2013,28(5):88-98. doi:10.3969/j.issn.1000-6753.2013.05.012 | |
27 | 黄弘扬,杨汾艳,徐政,等 .基于改进轨迹灵敏度指标的动态无功优化配置方法[J].电网技术,2012,36(2):88-94. |
HUANG H Y, YANG F Y, XU Z,et al .A dynamic VAR configuration method based on improved trajectory sensitivity index[J].Power System Technology,2012,36(2):88-94. | |
28 | 邓红雷,戴栋,李述文 .基于层次分析-熵权组合法的架空输电线路综合运行风险评估[J].电力系统保护与控制,2017,45(1):28-34. doi:10.7667/PSPC160058 |
DENG H L, DAI D, LI S W .Comprehensive operation risk evaluation of overhead transmission line based on hierarchical analysis-entropy weight method[J].Power System Protection and Control,2017,45(1):28-34. doi:10.7667/PSPC160058 | |
29 | 沈阳武,彭晓涛,施通勤,等 .基于最优组合权重的电能质量灰色综合评价方法[J].电力系统自动化,2012,36(10):67-73. |
SHEN Y W, PENG X T, SHI T Q,et al .A grey comprehensive evaluation method of power quality based on optimal combination weight[J].Automation of Electric Power Systems,2012,36(10):67-73. |
[1] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[2] | 严新荣, 张宁宁, 马奎超, 魏超, 杨帅, 潘彬彬. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12. |
[3] | 许帅, 杨羽霏, 刚傲, 谢越韬, 张晓明, 刘功鹏. 中欧漂浮式海上风电关键技术与产业链合作路径研究[J]. 发电技术, 2024, 45(1): 13-23. |
[4] | 孙财新, 张波, 唐巍, 周昳鸣, 付明志, 秦猛, 郭小江. 海上风电机组国产化研究与实践[J]. 发电技术, 2023, 44(5): 696-702. |
[5] | 贾文虎, 徐群杰. 海上风电设施防腐蚀技术研究进展[J]. 发电技术, 2023, 44(5): 703-711. |
[6] | 周昳鸣, 闫姝, 刘鑫, 张波, 郭雨桐, 郭小江. 中国海上风电支撑结构一体化设计综述[J]. 发电技术, 2023, 44(1): 36-43. |
[7] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[8] | 董辉, 葛维春, 张诗钽, 刘闯, 楚帅. 海上风电制氢与电能直接外送差异综述[J]. 发电技术, 2022, 43(6): 869-879. |
[9] | 高小童, 秦志龙, 高新宇. 含海上风电-光伏-储能的多能源发输电系统可靠性评估[J]. 发电技术, 2022, 43(4): 626-635. |
[10] | 余潇, 卜广全, 王姗姗. 风电经柔直孤岛送出交流暂态过电压抑制策略研究[J]. 发电技术, 2022, 43(4): 618-625. |
[11] | 杨万开, 王兴国, 王书扬. 渝鄂柔性直流输电接入电网高频谐振与抑制分析[J]. 发电技术, 2022, 43(3): 492-500. |
[12] | 杨舟, 杨仁炘, 施刚, 张建文. 一种用于多端直流输电系统交流故障穿越的新型控制策略[J]. 发电技术, 2022, 43(2): 268-277. |
[13] | 张智伟, 张建平, 刘明, 纪海鹏, 诸浩君, 周圣荻. 芦潮港海上风资源变化特性分析[J]. 发电技术, 2022, 43(2): 260-267. |
[14] | 邹晓阳, 潘卫国. 海上浮式风机动力学仿真分析研究进展[J]. 发电技术, 2022, 43(2): 249-259. |
[15] | 朱家宁, 张诗钽, 葛维春, 刘闯, 楚帅. 海上风电外送及电能输送技术综述[J]. 发电技术, 2022, 43(2): 236-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||