发电技术 ›› 2022, Vol. 43 ›› Issue (2): 249-259.DOI: 10.12096/j.2096-4528.pgt.22024
邹晓阳, 潘卫国
收稿日期:
2022-02-10
出版日期:
2022-04-30
发布日期:
2022-05-13
作者简介:
基金资助:
Xiaoyang ZOU, Weiguo PAN
Received:
2022-02-10
Published:
2022-04-30
Online:
2022-05-13
Supported by:
摘要:
海上浮式风机是向深远海获取风能的关键基础装备。由于其基础大幅度飘浮运动,且受到气动力、水动力及两者与结构产生的耦合作用,海上浮式风机的动力学特性复杂,研究其动力学有助于指导其设计、开发、运行和维护。从风机机身气动力学、飘浮基础水动力学、风浪流结构耦合动力学3个方面对近年来海上浮式风机动力学仿真分析的研究进展进行了综述分析,总结了目前该领域的研究成果和特点,指出了今后的研究趋势,以期为该领域的进一步研究提供参考。
中图分类号:
邹晓阳, 潘卫国. 海上浮式风机动力学仿真分析研究进展[J]. 发电技术, 2022, 43(2): 249-259.
Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine[J]. Power Generation Technology, 2022, 43(2): 249-259.
软件 | 开发者 | 空气动力学 | 水动力学 | 结构动力学 | 锚链模型 |
---|---|---|---|---|---|
FAST | NREL | BEM/GDW+DS | Airy+ME, Airy+PF+ME | Modal/MBS+FEM | QS |
ADAMS | MSC+NREL+LUH | BEM/GDW+DS | Airy+ME, Airy+PF+ME | MBS | QS |
Bladed (Advanced Hydro beta) | DNV GL | BEM/GDW+DS | PF+ME | Modal/MBS+FEM | QS |
Simo+Riflex+AreoDyn | MARINTEK, NREL | BEM/GDW+DS | PF+ME | MBS | FEM/Dyn |
HAWC2 | RISO-DTU | BEM/GDW+DS | Airy+ME, Airy+PF+ME | MBS+FEM | FEM/Dyn |
3DFloat | IFE-UMB | BEM/GDW | Airy+ME | FEM | FEM |
表1 海上浮式风机耦合动力学仿真分析软件
Tab. 1 Softwares for coupled dynamic simulation analysis of offshore floating wind turbine
软件 | 开发者 | 空气动力学 | 水动力学 | 结构动力学 | 锚链模型 |
---|---|---|---|---|---|
FAST | NREL | BEM/GDW+DS | Airy+ME, Airy+PF+ME | Modal/MBS+FEM | QS |
ADAMS | MSC+NREL+LUH | BEM/GDW+DS | Airy+ME, Airy+PF+ME | MBS | QS |
Bladed (Advanced Hydro beta) | DNV GL | BEM/GDW+DS | PF+ME | Modal/MBS+FEM | QS |
Simo+Riflex+AreoDyn | MARINTEK, NREL | BEM/GDW+DS | PF+ME | MBS | FEM/Dyn |
HAWC2 | RISO-DTU | BEM/GDW+DS | Airy+ME, Airy+PF+ME | MBS+FEM | FEM/Dyn |
3DFloat | IFE-UMB | BEM/GDW | Airy+ME | FEM | FEM |
1 | 万德成,程萍,黄扬,等 .海上浮式风机气动力-水动力耦合分析研究进展[J].力学季刊,2017,38(3):385-397. doi:10.15959/j.cnki.0254-0053.2017.03.001 |
WAN D C, CHENG P, HUANG Y,et al . Overview of study on wero- and hydro-dynamic interaction for floating offshore wind turbine[J].Chinese Quarterly of Mechanics,2017,38(3):385-397. doi:10.15959/j.cnki.0254-0053.2017.03.001 | |
2 | IEA .Technology roadmap:wind energy 2013[R/OL].(2013-10-04)[2022-02-04].. doi:10.4172/2153-2435.1000e148 |
3 | 易侃,张子良,张皓,等 .海上风能资源评估数值模拟技术现状及发展趋势[J].分布式能源,2021,6(1):1-6. doi:10.16513/j.2096-2185.DE.2106004 |
YI K, ZHANG Z L, ZHANG H,et al .Technical status and development trends of numerical modeling for offshore wind resource assessment[J].Distributed Energy,2021,6(1):1-6. doi:10.16513/j.2096-2185.DE.2106004 | |
4 | 杨航,周羽生,许振华,等 .基于储能和序分量控制的直驱永磁风电系统非对称故障穿越研究[J].电力系统保护与控制,2022,50(2):60-68. |
YANG H, ZHOU Y S, XU Z H,et al .Asymmetric fault ride-through of a direct-drive permanent magnet wind power system based on the control of energy storage and sequence components[J].Power System Protection and Control,2022,50(2):60-68. | |
5 | 冯子木,孙国强,滕德红,等 .永磁直驱风电机组低电压穿越研究综述[J].电力工程技术,2021,40(2):75-85. doi:10.12158/j.2096-3203.2021.02.011 |
FENG Z M, SUN G Q, TENG D H,et al .Reviews of LVRT technology for D-PMSG[J].Electric Power Engineering Technology,2021,40(2):75-85. doi:10.12158/j.2096-3203.2021.02.011 | |
6 | 王宾,李红涛,唐广银 .海上浮式风机研究进展概述[J].海洋工程装备与技术,2018,5(Sl):220-225. |
WANG B, LI H T, TANG G Y .Overview of offshore floating wind turbines[J].Ocean Engineering Equipment and Technology,2018,5(Sl):220-225. | |
7 | 余浩,肖彭瑶,林勇,等 .大规模海上风电高电压穿越研究进展与展望[J].智慧电力,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 |
YU H, XIAO P Y, LIN Y,et al .Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J].Smart Power,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 | |
8 | 刘晓辉,高人杰,薛宇 .浮式风力发电机组现状及发展趋势综述[J].分布式能源,2020,5(3):39-46. |
LIU X H, GAO R J, XUE Y .Current situation and future development trend of floating offshore wind turbine[J].Distributed Energy,2020,5(3):39-46. | |
9 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th five-year plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
10 | 王秀丽,赵勃扬,郑伊俊,等 .海上风力发电及送出技术与就地制氢的发展概述[J].浙江电力,2021,40(10):3-12. |
WANG X L, ZHAO B Y, ZHENG Y J,et al .A general survey of offshore wind power generation and transmission technologies and local hydrogen production[J].Zhejiang Electric Power,2021,40(10):3-12. | |
11 | MICALLEF D, REZAEIHA A .Floating offshore wind turbine aerodynamics:trends and future challenges[J].Renewable and Sustainable Energy Reviews,2021,152:111696. doi:10.1016/j.rser.2021.111696 |
12 | CHURCHFIELD M J, LEE S, MICHALAKES J,et al .A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics[J].Journal of Turbulence,2012,13:1-32. doi:10.1080/14685248.2012.668191 |
13 | CHURCHFIELD M J, LEE S, MORIARTY P J,et al .A large-eddy simulation of wind-plant aerodynamics [J].AIAA Paper,2012,1:1-19. doi:10.2514/6.2012-537 |
14 | 任年鑫 .海上风力机气动特性及新型浮式系统[D].哈尔滨:哈尔滨工业大学,2011. |
REN N X .Offshore wind turbine aerodynamic performance and novel floating system[D].Harbin:Harbin Institute of Technology,2011. | |
15 | 周胡,万德成 .不同叶片数的风力机绕流场的非定常流数值模拟[J].水动力学研究与进展A辑,2014,29(4):444-453. |
ZHOU H, WAN D C .Numerical simulation of the unsteady flow around wind turbines with different blades numbers[J].Chinese Journal of Hydrodynamics A,2014,29(4):444-453. | |
16 | 周胡,赵文超,万德成 .非均匀风影响下风力机三维气动粘性流场的数值模拟[J].海洋工程,2015,33(1).90-99. |
ZHOU H, ZHAO W C, WAN D C .Numerical simulation of 3D viscous flow field of wind turbine under nonuniform wind[J].The Ocean Engineering,2015,33(1):90-99. | |
17 | LI Y, CASTRO A M, SINOKROT T,et al .Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence[J].Renewable Energy,2015,76:338-361. doi:10.1016/j.renene.2014.11.014 |
18 | SANT T, CUSCHIERI K .Comparing three aerodynamic models for predicting the thrust and power characteristics of yawed floating wind turbine rotors[J].Journal of Solar Energy Engineering,2016,138(3):031004. doi:10.1115/1.4032684 |
19 | WEN R B, TIAN X L, DONG X J,et al .A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions[J].Energy,2019,168:1138-1156. doi:10.1016/j.energy.2018.11.082 |
20 | 刘利琴,陈迪郁,沈文君,等 .基于非定常面元法的海上浮式风机气动性能研究[J].海洋工程,2021,39(5):16-27. |
LIU L Q, CHEN D Y, SHEN W J,et al .Study on aerodynamic characteristics of floating wind turbines with unsteady panel method[J].The Ocean Engineering,2021,39(5):16-27. | |
21 | CHEN Z W, WANG X D, GUO Y Z,et al .Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions[J].Renewable Energy,2021,163:1849-1870. doi:10.1016/j.renene.2020.10.096 |
22 | ZHOU Y, XIAO Q, LIU Y C,et al .Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation[J].Renewable Energy,2022,182:1060-1079. doi:10.1016/j.renene.2021.11.010 |
23 | KIM S .SWIM 2001:frequency-domain analysis of offshore platforms,user manual[R].Cambridge,Massachusetts:Massachusetts Institute of Technology,2004. |
24 | KIM S .MOTION 2001:time-domain response analysis of offshore platforms,user manual[R].Cambridge,Massachusetts:Massachusetts Institute of Technology,2004. |
25 | KIM S .LINES 2001:nonlinear static & dynamic analysis of mooring line/riser/tether arrays,user manual[R].Cambridge,Massachusetts:Massachusetts Institute of Technology,2004. |
26 | DUNBAR A J, CRAVEN B A, PATERSON E G .Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms[J].Ocean Engineering,2015,110:98-105. doi:10.1016/j.oceaneng.2015.08.066 |
27 | NEMATBAKHSH A, BACHYNSKI E E, GAO Z,et al .Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches[J].Applied Ocean Research,2015,53:142-154. doi:10.1016/j.apor.2015.08.004 |
28 | UZUNOGLU E, SOARES C G .On the model uncertainty of wave induced platform motions and mooring loads of a semisubmersible based wind turbine [J].Ocean Engineering,2018,148:277-285. doi:10.1016/j.oceaneng.2017.11.001 |
29 | BRUINSMA N, PAULSEN B T, JACOBSEN N G .Validation and application of a fully nonlinear numerical wave tank for simulating floating offshore wind turbines[J].Ocean Engineering,2018,147:647-658. doi:10.1016/j.oceaneng.2017.09.054 |
30 | CHEN L, BASU B . NIELSEN S R K .A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis[J].Ocean Engineering,2018,162:304-315. doi:10.1016/j.oceaneng.2018.05.001 |
31 | XU K, SHAO Y L, GAO Z,et al .A study on fully nonlinear wave load effects on floating wind turbine [J].Journal of Fluids and Structures,2019,88:216-240. doi:10.1016/j.jfluidstructs.2019.05.008 |
32 | 邓思佳,宁德志,林琳,等 .海上风机基础高阶水动力荷载数值模拟研究[J].水动力学研究与进展,2021,36(6):811-816. |
DENG S J, NING D Z, LIN L,et al .Numerical investigation of higher-order hydrodynamic loads on offshore wind turbine foundation[J].Chinese Journal of Hydrodynamics,2021,36(6):811-816. | |
33 | ULLAH Z, MUHAMMAD N, CHOI D H .On the importance of nonlinear hydrostatic stiffness of offshore floating wind turbine platforms[J].Applied Ocean Research,2021,113:102730. doi:10.1016/j.apor.2021.102730 |
34 | ROBERTSON A, JONKMAN J, VORPAHL F,et al .Offshore code comparison collaboration continuation within IEA wind task 30:phase Ⅱ results regarding a floating semisubmersible wind system[C]//Proceedings of the 33rd International Conference on Ocean,Offshore and Artic Engineering,June 08-13,2014,San Francisco,CA,USA.New York:ASME,2014:15. doi:10.1115/omae2014-24040 |
35 | JONKMAN J M .Dynamics modeling and loads analysis of an offshore floating wind turbine[M].Ann Arbor,Michigan:ProQuest,2007. |
36 | QUALLEN S, XING T, CARRICA P,et al .CFD simulation of a floating offshore wind turbine system using a quasi-static crowfoot mooring-line model[C]// Proceedings of the International Offshore and Polar Engineering Conference,June 30-July 05,2013,Anchorage,Alaska,USA:International Society of Offshore and Polar Engineers,2013:268-275. |
37 | TRAN T, KIM D, SONG J .Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion[J].Energies,2014,7(8):5011-5026. doi:10.3390/en7085011 |
38 | 李鹏飞,万德成,刘建成 .基于致动线模型的风力机尾流场数值模拟[J].水动力学研究与进展,2016,31(2):127-134. |
LI P F, WAN D C, LIU J C .Numerical simulations of wake flows of wind turbine based on actuator line model[J].Chinese Journal of Hydrodynamics,2016,31(2):127-134. | |
39 | 李鹏飞 .海上浮式风机尾流场模拟及耦合动力分析[D].上海:上海交通大学,2016. |
LI P F .Numerical simulation of wake flows and coupled aero-hydrodynamic analysis of floating offshore wind turbine[D].Shanghai:Shanghai Jiao Tong University,2016. | |
40 | LI P F, WAN D C, HU C H .Fully-coupled dynamic response of a semi-submerged floating wind turbine system in wind and waves[C]//Proceedings of the International Offshore and Polar Engineering Conference,June 26-July,1Rhodes,Greece:International Society of Offshore and Polar Engineers,2016:273-281. |
41 | HUANG Y, WAN D C .Investigation of interference effects between wind turbine and spar-type floating platform under combined wind-wave excitation[J].Sustainability,2020,12:246. doi:10.3390/su12010246 |
42 | 郑建才,赵伟文,万德成 .垂荡板对浮式风机水动-气动耦合性能影响研究[J].海洋工程,2022,40(1):65-73. |
ZHENG J C, ZHAO W W, WAN D C .Effects of heave plate on coupling aero-hydrodynamic performances of floating offshore wind turbine[J].The Ocean Engineering,2022,40(1):65-73. | |
43 | WANG K, MOAN T, HANSEN M O L .Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater[J].Wind Energy,2016,19(10):1853-1870. doi:10.1002/we.1955 |
44 | 闫发锁,门骥远,彭成 .深水SPAR风机系统全耦合动力响应分析研究 [J].船舶力学,2017,21(2):159-167. doi:10.3969/j.issn.1007-7294.2017.02.005 |
YAN F S, MENG J Y, PENG C .Study on full coupling dynamic responses of a deepwater SPAR wind turbine system[J].Journal of Ship Mechanics,2017,21(2):159-167. doi:10.3969/j.issn.1007-7294.2017.02.005 | |
45 | CHENG Z, MADSEN H A, GAO Z,et al .A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines[J].Renewable Energy,2017,107:604-619. doi:10.1016/j.renene.2017.02.028 |
46 | BAROONI M, ALI N A, ASHURI T .An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines[J].Energy,2018,154:442-454. doi:10.1016/j.energy.2018.04.163 |
47 | 翟佳伟,唐友刚,李焱,等 .风浪流中涡激共振对Spar型浮式风机运动响应的影响[J].海洋工程,2018,36(4):39-49. |
ZHAI J W, TANG Y G, LI Y,et al .Effect of vortex-induced resonance on motion response of Spar-type FOWT under wind current and wave[J].The Ocean Engineering,2018,36(4):39-49. | |
48 | LIU Y C, XIAO Q, INCECIK A,et al .Investigation of the effects of platform motion on the aerodynamics of a floating offshore wind turbine[J].Journal of Hydrodynamics,2016,28(1):95-101. doi:10.1016/s1001-6058(16)60611-x |
49 | ZHU H Z, SUEYOSHI M, HU C H,et al .A study on a floating type shrouded wind turbine design,modeling and analysis[J].Renewable Energy,2019,134:1099-1113. doi:10.1016/j.renene.2018.09.028 |
50 | MA Z, REN N X, WANG Y,et al .A comprehensive study on the serbuoys offshore wind tension leg platform coupling dynamic response under typical operational conditions[J].Energies,2019,12:2067. doi:10.3390/en12112067 |
51 | YE K, JI J C .Current,wave,wind and interaction induced dynamic response of a 5 MW spar-type offshore direct-drive wind turbine[J].Engineering Structures,2019,178:395-409. doi:10.1016/j.engstruct.2018.10.023 |
52 | LI L, LIU Y C, YUAN Z M,et al .Dynamic and structural performances of offshore floating wind turbines in turbulent wind flow[J].Ocean Engineering,2019,179:92-103. doi:10.1016/j.oceaneng.2019.03.028 |
53 | 丁红岩,韩彦青,张浦阳,等 .浮式风机变桨故障后停机的动力特性研究[J].振动与冲击,2017,36(8):125-131. |
DING H Y, HAN Y Q, ZHANG P Y,et al .Dynamic analysis of floating wind turbine in blade pitch fault followed by shutdown[J].Journal of Vibration and Shock,2017,36(8):125-131. | |
54 | 李英,钱丽佳,程阳 .TLP风机基础二阶动力响应研究[J].海洋工程,2017,35(3):52-59. |
LI Y, QIAN L J, CHENG Y .Investigation of the second-order hydrodynamic response of TLP wind turbine[J].The Ocean Engineering,2017,35(3):52-59. | |
55 | 赵永生 .新型多立柱张力腿型浮式风力机概念设计与耦合动力特性研究[D].上海:上海交通大学,2018. doi:10.1007/s13344-018-0014-0 |
ZHAO Y S .Conceptual design and coupled dynamic analysis of a novel multi-column tension-leg-type floating wind turbine[D].Shanghai:Shanghai Jiao Tong University,2018. doi:10.1007/s13344-018-0014-0 | |
56 | 陈嘉豪,胡志强 .半潜式海上浮式风机气动阻尼特性研究[J].力学学报,2019,51(4):1155-1165. |
CHEN J H, HU Z Q .Study on aerodynamic damping of semi-submersible floating wind turbine[J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(4):1155-1165. | |
57 | 蔡恒,朱仁传,汪小佳,等 .浮式风机在风浪联合作用下的动力响应分析[J].哈尔滨工程大学学报,2019,40(1):118-125. doi:10.11990/jheu.201709043 |
CAI H, ZHU R C, WANG X J,et al .Dynamic response analysis of floating offshore wind turbine in combined wind and wave[J].Journal of Harbin Engineering University,2019,40(1):118-125. doi:10.11990/jheu.201709043 | |
58 | LEIMEISTER M, KOLIOS M, COLLU M .Development and verification of an aero-hydro-servo-elastic coupled model of dynamics for FOWT,based on the MoWiT library[J].Energies,2020,13:1974. doi:10.3390/en13081974 |
59 | MA Y, CHEN C H, FAN T H,et al .Research on motion inhibition method using an innovative type of mooring system for spar floating offshore wind turbine[J].Ocean Engineering,2021,223:108644. doi:10.1016/j.oceaneng.2021.108644 |
60 | ZHOU Y, XIAO Q, PEYRARD C,et al .Assessing focused wave applicability on a coupled aero-hydro-mooring FOWT system using CFD approach[J].Ocean Engineering,2021,240:109987. doi:10.1016/j.oceaneng.2021.109987 |
61 | WANG L, ROBERTSON A, JONKMAN J,et al .OC6 phase Ib:validation of the CFD predictions of difference-frequency wave excitation on a FOWT semisubmersible[J].Ocean Engineering,2021,241:110026. doi:10.1016/j.oceaneng.2021.110026 |
62 | PUSTINA L, LUGNI C, BERNARDINI G,et al .Control of power generated by a floating offshore wind turbine perturbed by sea waves[J].Renewable and Sustainable Energy Reviews,2020,132:109984. doi:10.1016/j.rser.2020.109984 |
63 | HAN C L, NAGAMUNE R .Platform position control of floating wind turbines using aerodynamic force[J].Renewable Energy,2020,151:896-907. doi:10.1016/j.renene.2019.11.079 |
64 | SARKAR S, FITZGERALD B, BASU B .Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation[J].IEEE Transactions on Control Systems Technology,2021,29(1):305-315. doi:10.1109/tcst.2020.2975148 |
65 | ROH C, HA Y J, AHN H J,et al .A comparative analysis of the characteristics of platform motion of a floating offshore wind turbine based on pitch controllers[J].Energies,2022,15:716. doi:10.3390/en15030716 |
66 | PARK S, GLADE M, LACKNER M A .Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine[J].Engineering Structures,2020,209:110260. doi:10.1016/j.engstruct.2020.110260 |
67 | GHABRAEI S, MORADI H, VOSSOUGHI G .Investigation of the effect of the added mass fluctuation and lateral vibration absorbers on the vertical nonlinear vibrations of the offshore wind turbine[J].Nonlinear Dynamics,2021,103:1499-1515. doi:10.1007/s11071-020-06194-1 |
[1] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[2] | 严新荣, 张宁宁, 马奎超, 魏超, 杨帅, 潘彬彬. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12. |
[3] | 许帅, 杨羽霏, 刚傲, 谢越韬, 张晓明, 刘功鹏. 中欧漂浮式海上风电关键技术与产业链合作路径研究[J]. 发电技术, 2024, 45(1): 13-23. |
[4] | 孙财新, 张波, 唐巍, 周昳鸣, 付明志, 秦猛, 郭小江. 海上风电机组国产化研究与实践[J]. 发电技术, 2023, 44(5): 696-702. |
[5] | 贾文虎, 徐群杰. 海上风电设施防腐蚀技术研究进展[J]. 发电技术, 2023, 44(5): 703-711. |
[6] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[7] | 周昳鸣, 闫姝, 刘鑫, 张波, 郭雨桐, 郭小江. 中国海上风电支撑结构一体化设计综述[J]. 发电技术, 2023, 44(1): 36-43. |
[8] | 刘晓明, 谭祖贶, 袁振华, 刘玉田. 柔性直流接入海上风电并网选址综合优化[J]. 发电技术, 2022, 43(6): 892-900. |
[9] | 董辉, 葛维春, 张诗钽, 刘闯, 楚帅. 海上风电制氢与电能直接外送差异综述[J]. 发电技术, 2022, 43(6): 869-879. |
[10] | 高小童, 秦志龙, 高新宇. 含海上风电-光伏-储能的多能源发输电系统可靠性评估[J]. 发电技术, 2022, 43(4): 626-635. |
[11] | 杨舟, 杨仁炘, 施刚, 张建文. 一种用于多端直流输电系统交流故障穿越的新型控制策略[J]. 发电技术, 2022, 43(2): 268-277. |
[12] | 张智伟, 张建平, 刘明, 纪海鹏, 诸浩君, 周圣荻. 芦潮港海上风资源变化特性分析[J]. 发电技术, 2022, 43(2): 260-267. |
[13] | 朱家宁, 张诗钽, 葛维春, 刘闯, 楚帅. 海上风电外送及电能输送技术综述[J]. 发电技术, 2022, 43(2): 236-248. |
[14] | 徐彬, 薛帅, 高厚磊, 彭放. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术, 2022, 43(2): 227-235. |
[15] | 胡丹梅, 曾理, 陈云浩. 半潜式海上风力机流固耦合特性分析[J]. 发电技术, 2022, 43(2): 218-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||