发电技术 ›› 2022, Vol. 43 ›› Issue (4): 626-635.DOI: 10.12096/j.2096-4528.pgt.22037
高小童1, 秦志龙2, 高新宇3
收稿日期:
2022-02-14
出版日期:
2022-08-31
发布日期:
2022-09-06
作者简介:
基金资助:
Xiaotong GAO1, Zhilong QIN2, Xinyu GAO3
Received:
2022-02-14
Published:
2022-08-31
Online:
2022-09-06
Supported by:
摘要:
风光荷相关性模型是准确评估海上风电-光伏-储能并网系统可靠性的基础。为解决高维风光荷相关性建模问题,提出了一种基于藤结构的混合时变Copula模型。通过结合实际海上风电场功率、光伏电站功率、电网负荷,建立了8种风光荷联合Copula模型,运用2个常用的最优模型评价准则,判断出所提Copula模型比其他模型更有优势。选取山东省风电场和光伏电站的实际功率数据,在含风电场和光伏电站的IEEE-RTS79系统中分析比较8组模型,结果表明:所提Copula模型可以更为准确地描述高维风光荷间相依结构,而其他模型则会低估风光荷三者间相关性对系统可靠性的影响。在测试系统加入储能电站后,其他模型在最优风光装机容量比例的选择、储能电站容量的选取、功率波动性的评价等方面也均存在偏差。
中图分类号:
高小童, 秦志龙, 高新宇. 含海上风电-光伏-储能的多能源发输电系统可靠性评估[J]. 发电技术, 2022, 43(4): 626-635.
Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage[J]. Power Generation Technology, 2022, 43(4): 626-635.
序号 | 模型 | AIC | BIC |
---|---|---|---|
1 | 单一静态Copula(Gumbel) | -6 584.33 | -5 969.10 |
2 | 单一时变Copula(时变Gumbel) | -6 710.96 | -6 054.15 |
3 | 混合静态Copula(Clayton+Gumbel+t) | -6 715.26 | -6 079.12 |
4 | 混合时变Copula(时变Clayton+时变Gumbel+时变t) | -6 796.75 | -6 111.11 |
5 | 基于C藤结构的单一静态Copula(Gumbel) | -6 740.26 | -6 023.35 |
6 | 基于C藤结构的单一时变Copula(时变Gumbel) | -6 814.26 | -6 181.22 |
7 | 基于C藤结构的混合静态Copula(Clayton+Gumbel+t) | -6 878.35 | -6 211.31 |
8 | 基于C藤结构的混合时变Copula(时变Rotated Gumbel+时变SJC+时变t) | -6 963.10 | -6 277.64 |
表 1 不同模型拟合效果对比
Tab. 1 Comparison of fitting effects of different models
序号 | 模型 | AIC | BIC |
---|---|---|---|
1 | 单一静态Copula(Gumbel) | -6 584.33 | -5 969.10 |
2 | 单一时变Copula(时变Gumbel) | -6 710.96 | -6 054.15 |
3 | 混合静态Copula(Clayton+Gumbel+t) | -6 715.26 | -6 079.12 |
4 | 混合时变Copula(时变Clayton+时变Gumbel+时变t) | -6 796.75 | -6 111.11 |
5 | 基于C藤结构的单一静态Copula(Gumbel) | -6 740.26 | -6 023.35 |
6 | 基于C藤结构的单一时变Copula(时变Gumbel) | -6 814.26 | -6 181.22 |
7 | 基于C藤结构的混合静态Copula(Clayton+Gumbel+t) | -6 878.35 | -6 211.31 |
8 | 基于C藤结构的混合时变Copula(时变Rotated Gumbel+时变SJC+时变t) | -6 963.10 | -6 277.64 |
模型 | PLC | EENS/(MW⋅h/a) |
---|---|---|
1 | 0.000 63 | 663.27 |
2 | 0.000 64 | 670.12 |
3 | 0.000 65 | 673.22 |
4 | 0.000 65 | 681.46 |
5 | 0.000 66 | 688.13 |
6 | 0.000 67 | 702.32 |
7 | 0.000 67 | 691.98 |
8 | 0.000 69 | 722.39 |
表2 加入风电、光伏电站的IEEE-RTS79系统可靠性指标
Tab. 2 Reliability index of IEEE-RTS79 system with wind and photovoltaic power stations
模型 | PLC | EENS/(MW⋅h/a) |
---|---|---|
1 | 0.000 63 | 663.27 |
2 | 0.000 64 | 670.12 |
3 | 0.000 65 | 673.22 |
4 | 0.000 65 | 681.46 |
5 | 0.000 66 | 688.13 |
6 | 0.000 67 | 702.32 |
7 | 0.000 67 | 691.98 |
8 | 0.000 69 | 722.39 |
情景 | PLC | EENS/(MW⋅h/a) |
---|---|---|
1 | 0.000 69 | 722.35 |
2 | 0.000 67 | 691.64 |
3 | 0.000 88 | 980.23 |
4 | 0.000 41 | 441.56 |
5 | 0.000 61 | 612.35 |
表3 风光荷间不同相关特性对系统可靠性的影响
Tab. 3 Influence of different correlation characteristics among wind, solar and load on system reliability
情景 | PLC | EENS/(MW⋅h/a) |
---|---|---|
1 | 0.000 69 | 722.35 |
2 | 0.000 67 | 691.64 |
3 | 0.000 88 | 980.23 |
4 | 0.000 41 | 441.56 |
5 | 0.000 61 | 612.35 |
模型 | 最优风光装机容量比例 |
---|---|
1 | 22∶5 |
2 | 4∶1 |
3 | 17∶4 |
4 | 14∶3 |
5 | 13∶3 |
6 | 18∶5 |
7 | 11∶3 |
8 | 10∶3 |
表4 最优风光装机容量比例
Tab. 4 Optimal wind-solar installed capacity ratio
模型 | 最优风光装机容量比例 |
---|---|
1 | 22∶5 |
2 | 4∶1 |
3 | 17∶4 |
4 | 14∶3 |
5 | 13∶3 |
6 | 18∶5 |
7 | 11∶3 |
8 | 10∶3 |
模型 | PLC | EENS/(MW⋅h/a) | ||
---|---|---|---|---|
1 | 0.000 52 | 537.3 | 244 | 31.8 |
2 | 0.000 53 | 542.3 | 177 | 32.3 |
3 | 0.000 52 | 536.1 | 228 | 31.9 |
4 | 0.000 54 | 547.2 | 167 | 30.7 |
5 | 0.000 56 | 556.8 | 185 | 28.8 |
6 | 0.000 57 | 562.4 | 162 | 27.5 |
7 | 0.000 58 | 569.2 | 144 | 26.3 |
8 | 0.000 59 | 577.6 | 137 | 25.2 |
表 5 风光储联合系统的风险评估结果
Tab. 5 Risk assessment results of wind-solar-storage system
模型 | PLC | EENS/(MW⋅h/a) | ||
---|---|---|---|---|
1 | 0.000 52 | 537.3 | 244 | 31.8 |
2 | 0.000 53 | 542.3 | 177 | 32.3 |
3 | 0.000 52 | 536.1 | 228 | 31.9 |
4 | 0.000 54 | 547.2 | 167 | 30.7 |
5 | 0.000 56 | 556.8 | 185 | 28.8 |
6 | 0.000 57 | 562.4 | 162 | 27.5 |
7 | 0.000 58 | 569.2 | 144 | 26.3 |
8 | 0.000 59 | 577.6 | 137 | 25.2 |
1 | 施云辉,郭创新 .考虑运行风险的含储能综合能源系统优化调度[J].发电技术,2020,41(1):56-63. doi:10.12096/j.2096-4528.pgt.19142 |
SHI Y H, GUO C X .Integrated energy system economic dispatch based on affine adjustable robust optimization[J].Power Generation Technology,2020,41(1):56-63. doi:10.12096/j.2096-4528.pgt.19142 | |
2 | 张柏林,郁娇山,黄万龙,等 .甘肃地区高比例新能源大外送电网面临的挑战及思考[J].电网与清洁能源,2020,36(4):81-89. doi:10.3969/j.issn.1674-3814.2020.04.012 |
ZHANG B L, YU J S, HUANG W L,et al .Challenges and reflections on the power grid of high proportion of new energy in Gansu province[J].Power System and Clean Energy,2020,36(4):81-89. doi:10.3969/j.issn.1674-3814.2020.04.012 | |
3 | 孟凡斌,周静,张霄,等 .基于改进FPA-LHS算法的并网型微电网容量优化配置研究[J].智慧电力,2021,49(10):45-51. doi:10.3969/j.issn.1673-7598.2021.10.008 |
MENG F B, ZHOU J, ZHANG X,et al .Optimal capacity configuration of grid-connected microgrid based on improved FPA-LHS algorithm[J].Smart Power,2021,49(10):45-51. doi:10.3969/j.issn.1673-7598.2021.10.008 | |
4 | 匡生,王蓓蓓 .考虑储能寿命和参与调频服务的风储联合运行优化策略[J].发电技术,2020,41(1):73-78. doi:10.12096/j.2096-4528.pgt.19161 |
KUANG S, WANG B B .Optimization strategy of wind storage joint operation considering energy storage life and participating in frequency modulation service[J].Power Generation Technology,2020,41(1):73-78. doi:10.12096/j.2096-4528.pgt.19161 | |
5 | 李湘旗,禹海峰,李欣然,等 .考虑储能系统动态全寿命周期特性的多功能应用需求规划方法[J].电力建设,2020,41(1):45-54. |
LI X Q, YU H F, LI X R,et al .Planning method for multi-functional application demand considering dynamic life cycle characteristics of energy storage[J].Electric Power Construction,2020,41(1):45-54. | |
6 | 吴红斌,白雪,王蕾 .基于序贯蒙特卡洛模拟的风光储发电系统可靠性评估[J].太阳能学报,2017,38(6):1501-1509. |
WU H B, BAI X, WANG L .Reliability evaluation of wind-solar-battery generation system based on sequential Monte Carlo simulation[J].Acta Energiae Solaris Sinica,2017,38(6):1501-1509. | |
7 | 禹海峰,潘力强,吴亚茹,等 .储能提升含高比例风电电力系统可靠性分析[J].电网与清洁能源,2020,36(6):92-98. doi:10.3969/j.issn.1674-3814.2020.06.014 |
YU H F, PAN L Q, WU Y,et al .Analysis of energy storage improving the reliability of power system with high proportional wind power[J].Power System and Clean Energy,2020,36(6):92-98. doi:10.3969/j.issn.1674-3814.2020.06.014 | |
8 | 袁明飞,赵凤展,王树田,等 .基于蒙特卡洛模拟的含风电-储能发电系统可靠性评估[J].电器与能效管理技术,2020(5):7. |
YUAN M F, ZHAO F Z, WANG S T,et al .Reliability evaluation of wind-storage power generation systems based on Monte Carlo simulation[J].Electrical & Energy Management Technology,2020(5):7. | |
9 | 白雪岩,樊艳芳,刘雨佳,等 .考虑可靠性及灵活性的风光储虚拟电厂分层容量配置[J].电力系统保护与控制,2022,50(8):11-24. |
BAI X Y, FAN Y F, LIU Y J,et al .Wind power storage virtual power plant considering reliability and flexibility tiered capacity configuration[J].Power System Protection and Control,2022,50(8):11-24. | |
10 | QIN Z L, LI W Y, XIONG X F .Generation system reliability evaluation incorporating correlations of wind speeds with different distributions[J].IEEE Transactions on Power Systems,2013,28(1):551-558. doi:10.1109/tpwrs.2012.2205410 |
11 | CHAO H, HU B, XIE K,et al .A sequential MCMC model for reliability evaluation of offshore wind farms considering severe weather conditions[J].IEEE Access,2019,99:132552-132562. doi:10.1109/access.2019.2941009 |
12 | 胡戎,邱晓燕,张志荣 .计及无功裕度的配电网两阶段无功优化调度策略[J].电力建设,2021,42(9):129-139. doi:10.12204/j.issn.1000-7229.2021.09.014 |
HU R, QIU X Y, ZHANG Z R .Two-stage reactive power optimization for distribution network considering reactive power marginwy[J].Electric Power Construction,2021,42(9):129-139. doi:10.12204/j.issn.1000-7229.2021.09.014 | |
13 | 谢敏,熊靖,刘明波,等 .基于 Copula 的多风电场功率相关性建模及其在电网经济调度中的应用[J].电网技术,2016,40(4):1100-1106. |
XIE M, XIONG J, LIU M B,et al .Modeling of multi wind farm output correlation based on Copula and its application in power system economic dispatch[J].Power System Technology,2016,40(4):1100-1106. | |
14 | 王小红,周步祥,张乐,等 .基于时变Copula函数的风电功率相关性分析[J].电力系统及其自动化学报,2015,27(1):43-48. |
WANG X H, ZHOU B X, ZHANG L,et al .Wind power correlation analysis based on time-variant copula function[J].Proceedings of the CSU-EPSA,2015,27(1):43-48. | |
15 | 段偲默,苗世洪,霍雪松,等 .基于动态Copula的风光联合功率建模及动态相关性分析[J].电力系统保护与控制,2019,47(5):35-42. |
DUAN S M, MIAO S H, HOU X S,et al .Modeling and dynamic correlation analysis of wind/solar power joint output based on dynamic Copula[J].Power System Protection and Control,2019,47(5):35-42. | |
16 | 万家豪,苏浩,冯冬涵,等 .计及源荷匹配的风光互补特性分析与评价[J].电网技术,2020,44(9):3219-3226. doi:10.1109/icpsasia48933.2020.9208513 |
WAN J H, SU H, FENG D H,et al .Analysis and evaluation of the complementarity characteristics of wind and photovoltaic considering source-load matching[J].Power System Technology,2020,44(9):3219-3226. doi:10.1109/icpsasia48933.2020.9208513 | |
17 | 季峰,蔡兴国,王俊 .基于混合Copula函数的风电功率相关性分析[J].电力系统自动化,2014,38(2):1-5. doi:10.7500/AEPS201208067 |
JI F, CAI X G, WANG J .Wind power correlation analysis based on hybrid Copula[J].Automation of Electric Power Systems,2014,38(2):1-5. doi:10.7500/AEPS201208067 | |
18 | 马燕峰,李鑫,刘金山,等 .考虑风电场时空相关性的多场景优化调度[J].电力自动化备,2020,40(2):55-65. |
MA Y F, LI X, LIU J S,et al .Multi-scenario optimal dispatch considering temporal-spatial correlation of wind farms[J].Electric Power Automation Equipment,2020,40(2):55-65. | |
19 | 吴巍,汪可友,李国杰,等 .基于Pair Copula的多维风电功率相关性分析及建模[J].电力系统自动化,2015,39(16):37-42. doi:10.7500/AEPS20141031011 |
WU W, WANG K Y, LI G J,et al .Correlation analysis and modeling of multiple wind power based on Pair Copula[J].Automation of Electric Power Systems,2015,39(16):37-42. doi:10.7500/AEPS20141031011 | |
20 | 邱宜彬,李诗涵,刘璐,等 .基于场景D藤Copula模型的多风电场功率相关性建模[J].太阳能学报,2019,40(10):2960-2966. |
QIU Y B, LI S H, LIU L,et al .Correlation modeling of power output among multiple wind farms based on scenario D vine copula method[J].Acta Energiae Solaris Sinica,2019,40(10):2960-2966. | |
21 | 刘放 .基于凸组合Copula和EM算法的信度理论[D].大连:大连理工大学,2012. doi:10.1109/cso.2012.180 |
LIU F .Reliability theory based on convex combination copula and EM algorithm[D].Dalian:Dalian University of Technology,2012. doi:10.1109/cso.2012.180 | |
22 | HAGHII H V, BINA M T, GOLKARR M A,et al .Using Copulas for analysis of large datasets in renewable distributed generation:PV and wind power integration in Iran[J].Renewable Energy,2010,35(9):1991-2000. doi:10.1016/j.renene.2010.01.031 |
23 | AKAIKE H .Factor analysis and AIC[J].Psychometrika,1987,52(3):317-332. doi:10.1007/bf02294359 |
24 | MILLER F P, VANDOMEE A F, MCBREWSTER J .Bayesian information criterion[M].Montana,USA:Alphascript Publishing,2010. |
25 | SINGHEE A R R A .Why Quasi-Monte Carlo is better than Monte Carlo or Latin hypercube sampling for statistical circuit analysis[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2010,29(11):1763-1776. doi:10.1109/tcad.2010.2062750 |
26 | 吕勤 .含风光储联合系统的发输电风险评估[D].北京:华北电力大学,2013. |
LV Q .Risk assessment of generation and transmission including wind-PV-ES hybrid power system[D].Beijing:North China Electric Power University,2013. | |
27 | BILLINTON R, LI W Y .Reliability assessment of electrical power systems using Monte Carlo methods[M].New York:Plenum Press,1994. doi:10.1007/978-1-4899-1346-3_3 |
28 | 王蕾 .分布式电源建模及其对配电网可靠性的影响研究[D].合肥:合肥工业大学,2015. |
WANG L .Research on modeling of distributed gene-ration and effect on distribution system reliability[D].Hefei:Hefei University of Technology,2015. |
[1] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[2] | 严新荣, 张宁宁, 马奎超, 魏超, 杨帅, 潘彬彬. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12. |
[3] | 许帅, 杨羽霏, 刚傲, 谢越韬, 张晓明, 刘功鹏. 中欧漂浮式海上风电关键技术与产业链合作路径研究[J]. 发电技术, 2024, 45(1): 13-23. |
[4] | 孙财新, 张波, 唐巍, 周昳鸣, 付明志, 秦猛, 郭小江. 海上风电机组国产化研究与实践[J]. 发电技术, 2023, 44(5): 696-702. |
[5] | 贾文虎, 徐群杰. 海上风电设施防腐蚀技术研究进展[J]. 发电技术, 2023, 44(5): 703-711. |
[6] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[7] | 周昳鸣, 闫姝, 刘鑫, 张波, 郭雨桐, 郭小江. 中国海上风电支撑结构一体化设计综述[J]. 发电技术, 2023, 44(1): 36-43. |
[8] | 刘晓明, 谭祖贶, 袁振华, 刘玉田. 柔性直流接入海上风电并网选址综合优化[J]. 发电技术, 2022, 43(6): 892-900. |
[9] | 董辉, 葛维春, 张诗钽, 刘闯, 楚帅. 海上风电制氢与电能直接外送差异综述[J]. 发电技术, 2022, 43(6): 869-879. |
[10] | 杨舟, 杨仁炘, 施刚, 张建文. 一种用于多端直流输电系统交流故障穿越的新型控制策略[J]. 发电技术, 2022, 43(2): 268-277. |
[11] | 张智伟, 张建平, 刘明, 纪海鹏, 诸浩君, 周圣荻. 芦潮港海上风资源变化特性分析[J]. 发电技术, 2022, 43(2): 260-267. |
[12] | 邹晓阳, 潘卫国. 海上浮式风机动力学仿真分析研究进展[J]. 发电技术, 2022, 43(2): 249-259. |
[13] | 朱家宁, 张诗钽, 葛维春, 刘闯, 楚帅. 海上风电外送及电能输送技术综述[J]. 发电技术, 2022, 43(2): 236-248. |
[14] | 徐彬, 薛帅, 高厚磊, 彭放. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术, 2022, 43(2): 227-235. |
[15] | 胡丹梅, 曾理, 陈云浩. 半潜式海上风力机流固耦合特性分析[J]. 发电技术, 2022, 43(2): 218-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||