发电技术 ›› 2022, Vol. 43 ›› Issue (2): 207-217.DOI: 10.12096/j.2096-4528.pgt.22043
陈作舟1, 余浩2, 王盼盼3, 陈鸿琳2, 陈武晖3
收稿日期:
2022-02-18
出版日期:
2022-04-30
发布日期:
2022-05-13
作者简介:
基金资助:
Zuozhou CHEN1, Hao YU2, Panpan WANG3, Honglin CHEN2, Wuhui CHEN3
Received:
2022-02-18
Published:
2022-04-30
Online:
2022-05-13
Supported by:
摘要:
短路比是度量风电场接入交流系统诱发次同步振荡风险的重要指标。对于风火打捆并网运行的短路比,目前并无明确定义和详细的计算公式。由此,针对某实际规划双海上风电集群与火电打捆系统场景,提出了一种短路比计算方法,揭示计及双风电集群相互作用对次同步振荡的影响。研究结果显示,风火打捆并网对系统短路比有提升作用,相比于纯风电,能减缓短路比降低的速度,并提高次同步振荡时的稳定性。通过公式分析,风火打捆短路比3项影响因素为系统阻抗、风机配比、风火比例,三者对发生次同步振荡的临界短路比的影响比重不同,分析结果显示,风机配比对次同步振荡的影响比重最小,风火比例的影响比重最大。最后,在PSCAD/EMTDC中搭建某实际规划海上风电集群与火电打捆系统模型,验证了上述研究结果的合理性。
中图分类号:
陈作舟, 余浩, 王盼盼, 陈鸿琳, 陈武晖. 海上风电集群与火电打捆外送系统短路比定义及影响因素分析[J]. 发电技术, 2022, 43(2): 207-217.
Zuozhou CHEN, Hao YU, Panpan WANG, Honglin CHEN, Wuhui CHEN. Definition and Influencing Factors of Short-Circuit Ratio Between Offshore Wind Power Cluster and Thermal Power Bundling System[J]. Power Generation Technology, 2022, 43(2): 207-217.
n1∶n2 | n1/pu | n2/pu | 短路比 |
---|---|---|---|
1∶1 | 1.000 | 1.000 | 0.363 6 |
5∶6 | 0.909 | 1.091 | 0.356 3 |
4∶5 | 0.889 | 1.111 | 0.353 2 |
3∶4 | 0.857 | 1.143 | 0.347 5 |
2∶3 | 0.800 | 1.200 | 0.336 1 |
1∶2 | 0.667 | 1.333 | 0.308 5 |
表1 风机总台数为2.0 pu时不同风场容量比例对应的双风场系统短路比
Tab. 1 Short-circuit ratio of dual wind farm system corresponding to different wind farm capacity ratios when the total number of wind turbines is 2.0 pu
n1∶n2 | n1/pu | n2/pu | 短路比 |
---|---|---|---|
1∶1 | 1.000 | 1.000 | 0.363 6 |
5∶6 | 0.909 | 1.091 | 0.356 3 |
4∶5 | 0.889 | 1.111 | 0.353 2 |
3∶4 | 0.857 | 1.143 | 0.347 5 |
2∶3 | 0.800 | 1.200 | 0.336 1 |
1∶2 | 0.667 | 1.333 | 0.308 5 |
n1∶n2 | n1/pu | n2/pu | 短路比 |
---|---|---|---|
1∶1 | 0.30 | 0.30 | 1.212 |
2∶3 | 0.24 | 0.36 | 1.120 |
1∶2 | 0.20 | 0.40 | 1.028 |
表2 风机总台数为0.6 pu时不同风场容量比例对应的双风场系统短路比
Tab. 2 Short-circuit ratio of dual-wind farm system corresponding to different wind farm capacity ratios when the total number of wind turbines is 0.6 pu
n1∶n2 | n1/pu | n2/pu | 短路比 |
---|---|---|---|
1∶1 | 0.30 | 0.30 | 1.212 |
2∶3 | 0.24 | 0.36 | 1.120 |
1∶2 | 0.20 | 0.40 | 1.028 |
TB | nB1/台 | nB2/台 | 短路比 |
---|---|---|---|
1∶1 | 300 | 300 | 2.4 |
2∶3 | 240 | 360 | 2.1 |
1∶2 | 200 | 400 | 2.0 |
表3 CASE-B相对应的双风场系统短路比
Tab.3 Short-circuit ratio of double wind farm system corresponding to CASE-B
TB | nB1/台 | nB2/台 | 短路比 |
---|---|---|---|
1∶1 | 300 | 300 | 2.4 |
2∶3 | 240 | 360 | 2.1 |
1∶2 | 200 | 400 | 2.0 |
nC/台 | nC1/台 | nC2/台 | 短路比 |
---|---|---|---|
500 | 250 | 250 | 2.9 |
800 | 400 | 400 | 1.8 |
1 000 | 500 | 500 | 1.4 |
表4 CASE-C相对应的双风场系统短路比
Tab.4 Short-circuit ratio of double wind farm system corresponding to CASE-C
nC/台 | nC1/台 | nC2/台 | 短路比 |
---|---|---|---|
500 | 250 | 250 | 2.9 |
800 | 400 | 400 | 1.8 |
1 000 | 500 | 500 | 1.4 |
1 | 刘新苗,卢洵,娄源媛,等 .基于时序运行模拟的风火打捆最优容量配比整定[J].电力系统保护与控制,2021,49(21):53-62. |
LIU X M, LU X, LOU Y Y,et al .Optimal setting of wind-thermal-bundled capacity ratio based on chronological operation simulation[J].Power System Protection and Control,2021,49(21):53-62. | |
2 | 沙志成,王艳,郑帅 .风火打捆比例对直流孤岛系统稳定性影响的研究[J].电力系统保护与控制,2017,45(14):148-154. doi:10.7667/PSPC161098 |
SHA Z Z, WANG Y, ZHENG S .Study on the effect of wind-thermal installed capacity ratio on the stability of DC islanded system[J].Power System Protection and Control,2017,45(14):148-154. doi:10.7667/PSPC161098 | |
3 | 姜欣,陈红坤,回俊龙,等 .计及弃风的风电场最优装机容量[J].电工技术学报,2016,31(18):160-168. doi:10.3969/j.issn.1000-6753.2016.18.020 |
JIANG X, CHEN H K, HUI J L,et al .Optimal installed capacity of wind farm considering wind power curtailment[J].Transactions of China Electrotechnical Society,2016,31(18):160-168. doi:10.3969/j.issn.1000-6753.2016.18.020 | |
4 | 于志勇,宋新甫,张增强,等 .风电功率外送输电容量规划的经济性研究[J].四川电力技术,2020,43(4):56-60. |
YU Z Y, SONG X F, ZHANG Z Q,et al .Economic research on transmission capacity planning of wind power delivery[J].Sichuan Electric Power Technology,2020,43(4):56-60. | |
5 | 朱建华,李振清,许立长 .基于随机子空间方法的光伏变流器模态识别和分析[J].发电技术,2021,42(2):201-206. doi:10.12096/j.2096-4528.pgt.19141 |
ZHU J H, LI Z Q, XU L C.Modal identification and analysis of photovoltaic converter based on random subspace[J].Power Generation Technology,2021,42(2):201-206. doi:10.12096/j.2096-4528.pgt.19141 | |
6 | 王利超,于永军,张明远,等.直驱风电机组阻抗建模及次同步振荡影响因素分析[J].电力工程技术,2020,39(1):170-177. doi:10.12158/j.2096-3203.2020.01.024 |
WANG L C, YU Y J, ZHANG M Y,et al .Impedance model and analysis of subsynchronous oscillation influence factors for grid-connected full-converter wind turbines[J].Electric Power Engineering Technology,2020,39(1):170-177. doi:10.12158/j.2096-3203.2020.01.024 | |
7 | 赵伟哲,崔成,严干贵,等 .用于次同步振荡分析的直驱风电场等值模型[J].智慧电力,2022,50(2):22-28. doi:10.3969/j.issn.1673-7598.2022.02.004 |
ZHAO W Z, CUI C, YAN G G,et al .Equivalent model of D-PMSG-based wind farm for subsynchronous oscillation analysis[J].Smart Power,2022,50(2):22-28. doi:10.3969/j.issn.1673-7598.2022.02.004 | |
8 | 黄星宇,罗萍萍,龚锦霞,等 .新能源并网系统次同步谐波相量检测方法[J].电力系统保护与控制,2020,48(13):38-44. |
HUANG X Y, LUO P P, GONG J X,et al .Subsynchronous harmonic phasor detection in a renewable energy grid-connected system[J].Power System Protection and Control,2020,48(13):38-44. | |
9 | 朱子琪,张文松,李洛,等 .考虑弃风限电风险的风火打捆外送多目标优化调度方法[J].可再生能源,2019,37(7):1034-1041. doi:10.3969/j.issn.1671-5292.2019.07.015 |
ZHU Z Q, ZHANG W S, LI L,et al .Multi-objective optimization scheduling method for wind-thermal-bundled transmitted system considering wind curtailment and power shortage risk[J].Renewable Energy Resources,2019,37(7):1034-1041. doi:10.3969/j.issn.1671-5292.2019.07.015 | |
10 | 汤奕,赵丽莉,郭小江 .风电比例对风火打捆外送系统功角暂态稳定性影响[J].电力系统自动化,2013,37(20):34-40. doi:10.7500/AEPS201209111 |
TANG Y, ZHAO L L, GUO X J .Impact of wind power penetration on angle transient stability of wind-thermal combined system[J].Automation of Electric Power Systems,2013,37(20):34-40. doi:10.7500/AEPS201209111 | |
11 | 田军,张师,周毅博,等 .风火打捆交直流混联系统暂态稳定控制策略研究[J].智能电网,2016,4(10):1003-1006. |
TIAN J, ZHANG S, ZHOU Y B,et al .Control strategy for transient stability of wind-thermal-bundled AC-DC hybrid power system[J].Smart Grid,2016,4(10):1003-1006. | |
12 | 赵祥,张师,周毅博,等 .风火打捆交直流混联送端系统暂态稳定性分析[J].智能电网,2015,3(7):594-602. |
ZHAO X, ZHANG S, ZHOU Y B,et al .Analysis on transient stability for wind-thermal-bundled power transmitted by AC/DC system[J].Smart Grid,2015,3(7):594-602. | |
13 | 王嘉铭,余浩,陈武晖 .多馈入直流输电系统换相失败研究综述[J].发电技术,2020,41(4):335-345. doi:10.12096/j.2096-4528.pgt.19026 |
WANG J M, YU H, CHEN W H .Research on commutation failure in multi-feed HVDC transmission system[J].Power Generation Technology,2020,41(4):335-345. doi:10.12096/j.2096-4528.pgt.19026 | |
14 | 吴萍,陈昊,赵兵,等 .风光火打捆交直流混联外送系统交互影响及稳定性研究[J].电网技术,2016,40(7):1934-1942. |
WU P, CHEN H, ZHAO B,et al .Study on interaction and stability characteristics of bundled wind-PV-thermal power transmitted with AC/DC system[J].Power System Technology,2016,40(7):1934-1942. | |
15 | 李生福,张爱玲,李少华,等 .“风火打捆”交直流外送系统的暂态稳定控制研究[J].电力系统保护与控制,2015,43(1):108-114. doi:10.7667/j.issn.1674-3415.2015.01.019 |
LI S F, ZHANG A L, LI S H,et al .Study on transient stability control for wind-thermal-bundled power transmitted by AC/DC system[J].Power System Protection and Control,2015,43(1):108-114. doi:10.7667/j.issn.1674-3415.2015.01.019 | |
16 | 郭小江,赵丽莉,汤奕,等 .风火打捆交直流外送系统功角暂态稳定研究[J].中国电机工程学报,2013,33(22):19-25. |
GUO X J, ZHAO L L, TANG Y,et al .Study on angle transient stability for wind-thermal-bundled power transmitted by AC/DC system[J].Proceedings of the CSEE,2013,33(22):19-25. | |
17 | The Institute of Electrical and Electronics Engineers, Inc. . IEEE guide for planning DC links terminating at AC locations having low short-circuit capacities:IEEE standard 1204—1997 [S].New York:The Institute of Electrical and Electronics Engineers,Inc.,1997. |
18 | SHAO Y, TANG Y .Fast evaluation of commutation failure risk in multi-infeed HVDC systems[J].IEEE Transactions on Power Systems,2018,33(1):646-653. doi:10.1109/tpwrs.2017.2700045 |
19 | 林伟芳,汤涌,卜广全 .多馈入交直流系统短路比的定义和应用[J].中国电机工程学报,2008,28(31):1-8. doi:10.3321/j.issn:0258-8013.2008.31.001 |
LIN W F, TANG Y, BU G Q .Definition and application of short circuit ratio for multi-infeed AC/DC power systems[J].Proceedings of the CSEE,2008,28(31):1-8. doi:10.3321/j.issn:0258-8013.2008.31.001 | |
20 | 辛焕海,章枫,于洋,等 .多馈入直流系统广义短路比:定义与理论分析[J].中国电机工程学报,2016,36(3):633-647. |
XIN H H, ZHANG F, YU Y,et al .Generalized short circuit ratio for multi-infeed DC systems:definition and theoretical analysis[J].Proceedings of the CSEE,2016,36(3):633-647. | |
21 | 郭小江,汤涌,郭强,等 .CIGRE多馈入直流短路比指标影响因素及机理[J].电力系统保护与控制,2012,40(9):69-74. doi:10.3969/j.issn.1674-3415.2012.09.012 |
GUO X J, TANG Y, GUO Q,et al .Influence factors and theory for CIGRE MISCR index[J].Power System Protection and Control,2012,40(9):69-74. doi:10.3969/j.issn.1674-3415.2012.09.012 | |
22 | 辛焕海,董炜,袁小明,等 .电力电子多馈入电力系统的广义短路比[J].中国电机工程学报,2016,36(22):6013-6027. |
XIN H H, DONG W, YUAN X M,et al .Generalized short circuit ratio for multi power electronic based devices infeed to power systems[J].Proceedings of the CSEE,2016,36(22):6013-6027. | |
23 | 林伟芳,汤涌,郭小江 .多馈入交直流系统短路比影响因素分析[J].电网技术,2011,35(8):64-68. |
LIN W F, TANG Y, GUO X J .Analysis of influencing factors of short circuit ratio of multi-infeed AC/DC power systems[J].Power System Technology,2011,35(8):64-68. | |
24 | 陈程,汪炜将,王佳,等 .多馈入交直流系统广义短路比的影响因素分析[J].电力学报,2017,32(3):200-205. |
CHEN C, WANG W J, WANG J,et al .Analysis of influencing factors of generalized short circuit ratio of multi-infeed AC/DC system[J].Journal of Electric Power,2017,32(3):200-205. | |
25 | 孙华东,徐式蕴,许涛,等 .新能源多场站短路比定义及指标[J].中国电机工程学报,2021,41(2):497-506. |
SUN H D, XU S Y, XU T,et al .Definition and index of short circuit ratio for multiple renewable energy stations[J].Proceedings of the CSEE,2021,41(2):497-506. | |
26 | 毕天姝,李景一 .基于聚合短路比的大型风场次同步振荡风险初筛[J].电力系统保护与控制,2019,47(5):52-59. doi:10.7667/PSPC181311 |
BI T S, LI J Y .Risk screening of SSO induced in large-scale wind farms based on aggregated short circuit ratio[J].Power System Protection and Control,2019,47(5):52-59. doi:10.7667/PSPC181311 |
[1] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[2] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[3] | 严新荣, 张宁宁, 马奎超, 魏超, 杨帅, 潘彬彬. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12. |
[4] | 许帅, 杨羽霏, 刚傲, 谢越韬, 张晓明, 刘功鹏. 中欧漂浮式海上风电关键技术与产业链合作路径研究[J]. 发电技术, 2024, 45(1): 13-23. |
[5] | 王进钊, 严干贵, 刘侃. 基于交替方向隐式平衡截断法的直驱风电场次同步振荡分析的模型降阶研究[J]. 发电技术, 2023, 44(6): 850-858. |
[6] | 孙财新, 张波, 唐巍, 周昳鸣, 付明志, 秦猛, 郭小江. 海上风电机组国产化研究与实践[J]. 发电技术, 2023, 44(5): 696-702. |
[7] | 贾文虎, 徐群杰. 海上风电设施防腐蚀技术研究进展[J]. 发电技术, 2023, 44(5): 703-711. |
[8] | 周昳鸣, 闫姝, 刘鑫, 张波, 郭雨桐, 郭小江. 中国海上风电支撑结构一体化设计综述[J]. 发电技术, 2023, 44(1): 36-43. |
[9] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[10] | 董辉, 葛维春, 张诗钽, 刘闯, 楚帅. 海上风电制氢与电能直接外送差异综述[J]. 发电技术, 2022, 43(6): 869-879. |
[11] | 康佳乐, 余浩, 段瑶, 陈武晖, 王丹辉. 风电场次同步振荡等值建模方法研究[J]. 发电技术, 2022, 43(6): 880-891. |
[12] | 刘晓明, 谭祖贶, 袁振华, 刘玉田. 柔性直流接入海上风电并网选址综合优化[J]. 发电技术, 2022, 43(6): 892-900. |
[13] | 高小童, 秦志龙, 高新宇. 含海上风电-光伏-储能的多能源发输电系统可靠性评估[J]. 发电技术, 2022, 43(4): 626-635. |
[14] | 杨舟, 杨仁炘, 施刚, 张建文. 一种用于多端直流输电系统交流故障穿越的新型控制策略[J]. 发电技术, 2022, 43(2): 268-277. |
[15] | 张智伟, 张建平, 刘明, 纪海鹏, 诸浩君, 周圣荻. 芦潮港海上风资源变化特性分析[J]. 发电技术, 2022, 43(2): 260-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||