发电技术 ›› 2026, Vol. 47 ›› Issue (1): 26-37.DOI: 10.12096/j.2096-4528.pgt.260103
严新荣1,2, 董联鑫3, 赵大周3, 郑成航1
收稿日期:2025-09-25
修回日期:2026-01-12
出版日期:2026-02-28
发布日期:2026-02-12
作者简介:基金资助:Xinrong YAN1,2, Lianxin DONG3, Dazhou ZHAO3, Chenghang ZHENG1
Received:2025-09-25
Revised:2026-01-12
Published:2026-02-28
Online:2026-02-12
Supported by:摘要:
目的 多能互补大基地中资源种类多元,新能源出力波动大、运行工况复杂、业主需求多样,实际运营优化面临较大的挑战,因此需要根据工程实际来设计开发风光火储耦合系统的运行方案。 方法 建立新能源大基地运行模型,以经济性、碳排放、负荷波动率、新能源消纳率为核心优化目标,综合考虑各种运行需求及不同时间尺度下的设备灵活性,研究多模式三阶段运行优化方案,并结合实际工程案例对全年典型日以及各季节典型日进行分析,验证方案的有效性。 结果 调度方法可有效平衡多元优化目标,兼顾设备灵活性与多样化需求,提升大基地运行的经济性与友好性。 结论 所提方案可有效解决大基地运行优化的多模式多阶段问题,建议运营方基于不同季节的新能源出力特性签订外送曲线合约来提高经济性。研究结果可为同类型新能源大基地的运营提供工程案例参考与技术支撑。
中图分类号:
严新荣, 董联鑫, 赵大周, 郑成航. 多能互补新能源大基地的三阶段多模式优化运行研究[J]. 发电技术, 2026, 47(1): 26-37.
Xinrong YAN, Lianxin DONG, Dazhou ZHAO, Chenghang ZHENG. Research on Three-Stage and Multi-Mode Operation Optimization for Large-Scale Multi-Energy Complementary New Energy Bases[J]. Power Generation Technology, 2026, 47(1): 26-37.
| 序号 | 参数 | 数值 |
|---|---|---|
| 1 | 电储能SOC最大值/最小值 | 0.95/0.05 |
| 2 | 电储能储/放效率 | 0.95/0.95 |
| 3 | 热储能SOC最大值/最小值 | 0.97/0.05 |
| 4 | 热储能储/放效率 | 0.95/0.47 |
| 5 | 售电均价/[元/(kW⋅h)] | 0.274 |
| 6 | 动力煤价/(元/t) | 320 |
| 7 | 弃风弃光价格/[元/(kW⋅h)] | 0.2 |
| 8 | 机组最小启/停时间/h | 5/5 |
| 9 | 热储能最小启/停时间/h | 4/4 |
表1 主要边界参数
Tab. 1 Main boundary parameters
| 序号 | 参数 | 数值 |
|---|---|---|
| 1 | 电储能SOC最大值/最小值 | 0.95/0.05 |
| 2 | 电储能储/放效率 | 0.95/0.95 |
| 3 | 热储能SOC最大值/最小值 | 0.97/0.05 |
| 4 | 热储能储/放效率 | 0.95/0.47 |
| 5 | 售电均价/[元/(kW⋅h)] | 0.274 |
| 6 | 动力煤价/(元/t) | 320 |
| 7 | 弃风弃光价格/[元/(kW⋅h)] | 0.2 |
| 8 | 机组最小启/停时间/h | 5/5 |
| 9 | 热储能最小启/停时间/h | 4/4 |
| 指标 | 运行模式 | |||
|---|---|---|---|---|
| 经济 | 低碳 | 波动平抑 | 新能源 消纳 | |
| 净收益/万元 | 5 312.02 | 4 142.61 | 5 136.61 | 5 124.02 |
| 碳排放/t | 30 218.63 | 19 969.13 | 28 485.62 | 32 269.84 |
| 交易收益/万元 | 5 887.43 | 4 556.52 | 5 723.94 | 5 915.68 |
| 弃风弃光量/(MW⋅h) | 8.96 | 0 | 0 | 0 |
| 购电量/(MW⋅h) | 765.44 | 30 203.83 | 549.83 | 17.34 |
| 火电发电量/(MW⋅h) | 37 295.17 | 6 084.09 | 35 263.40 | 40 326.12 |
| 储能调节成本/万元 | 194.41 | 318.49 | 186.11 | 419.40 |
| 单位成本/[元/(MW⋅h)] | 50.89 | 149.33 | 52.83 | 66.71 |
| 单位碳排放/[t/(MW⋅h)] | 0.25 | 0.17 | 0.25 | 0.27 |
表2 不同运行模式下的统计指标
Tab. 2 Statistical indicators under different operation modes
| 指标 | 运行模式 | |||
|---|---|---|---|---|
| 经济 | 低碳 | 波动平抑 | 新能源 消纳 | |
| 净收益/万元 | 5 312.02 | 4 142.61 | 5 136.61 | 5 124.02 |
| 碳排放/t | 30 218.63 | 19 969.13 | 28 485.62 | 32 269.84 |
| 交易收益/万元 | 5 887.43 | 4 556.52 | 5 723.94 | 5 915.68 |
| 弃风弃光量/(MW⋅h) | 8.96 | 0 | 0 | 0 |
| 购电量/(MW⋅h) | 765.44 | 30 203.83 | 549.83 | 17.34 |
| 火电发电量/(MW⋅h) | 37 295.17 | 6 084.09 | 35 263.40 | 40 326.12 |
| 储能调节成本/万元 | 194.41 | 318.49 | 186.11 | 419.40 |
| 单位成本/[元/(MW⋅h)] | 50.89 | 149.33 | 52.83 | 66.71 |
| 单位碳排放/[t/(MW⋅h)] | 0.25 | 0.17 | 0.25 | 0.27 |
| 指标 | 春季 | 夏季 | 秋季 | 冬季 |
|---|---|---|---|---|
| 净收益/万元 | 4 113.87 | 5 214.28 | 4 431.81 | 3 242.18 |
| 碳排放/t | 42 679.91 | 31 544.22 | 41 221.40 | 57 706.29 |
| 交易收益/万元 | 4 768.85 | 5 832.23 | 5 081.61 | 3 795.49 |
| 弃风弃光量/(MW⋅h) | 259.47 | 129.99 | 90.17 | 0 |
| 购电量/(MW⋅h) | 22 267.17 | 1 322.39 | 15 000.30 | 41 812.59 |
| 火电发电量/(MW⋅h) | 39 432.84 | 38 603.72 | 42 151.53 | 46 000.00 |
| 储能调节成本/万元 | 226.61 | 205.39 | 243.78 | 158.51 |
| 单位成本/[元/(MW⋅h)] | 151.75 | 59.12 | 124.99 | 225.14 |
| 单位碳排放/[t/(MW⋅h)] | 0.36 | 0.27 | 0.35 | 0.49 |
表3 各季节典型日经济运行统计指标
Tab. 3 Statistical indicators of economic operation mode on typical days of each season
| 指标 | 春季 | 夏季 | 秋季 | 冬季 |
|---|---|---|---|---|
| 净收益/万元 | 4 113.87 | 5 214.28 | 4 431.81 | 3 242.18 |
| 碳排放/t | 42 679.91 | 31 544.22 | 41 221.40 | 57 706.29 |
| 交易收益/万元 | 4 768.85 | 5 832.23 | 5 081.61 | 3 795.49 |
| 弃风弃光量/(MW⋅h) | 259.47 | 129.99 | 90.17 | 0 |
| 购电量/(MW⋅h) | 22 267.17 | 1 322.39 | 15 000.30 | 41 812.59 |
| 火电发电量/(MW⋅h) | 39 432.84 | 38 603.72 | 42 151.53 | 46 000.00 |
| 储能调节成本/万元 | 226.61 | 205.39 | 243.78 | 158.51 |
| 单位成本/[元/(MW⋅h)] | 151.75 | 59.12 | 124.99 | 225.14 |
| 单位碳排放/[t/(MW⋅h)] | 0.36 | 0.27 | 0.35 | 0.49 |
| [1] | 李晖,刘栋,姚丹阳 .面向碳达峰碳中和目标的我国电力系统发展研判[J].中国电机工程学报,2021,41(18):6245-6258. |
| LI H, LIU D, YAO D Y .Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J].Proceedings of the CSEE,2021,41(18):6245-6258. | |
| [2] | 舒印彪,赵勇,赵良,等 .“双碳”目标下我国能源电力低碳转型路径[J].中国电机工程学报,2023,43(5):1663-1671. |
| SHU Y B, ZHAO Y, ZHAO L,et al .Low-carbon transformation path of China’s energy and power under the “dual carbon” goal[J].Proceedings of the CSEE,2023,43(5):1663-1671. | |
| [3] | 张文博,邢海军,聂立君,等 .考虑高渗透率可再生能源的新型电力系统可靠性评估综述[J].电测与仪表,2025,62(9):51-61. |
| ZHANG W B, XING H J, NIE L J,et al .Review of the novel power system reliability assessment with high penetration renewable energy[J].Electrical Measurement & Instrumentation,2025,62(9):51-61. | |
| [4] | 刘世隆,韦建溪,田楠 .基于合理弃能的抽蓄-风-光-火联合发电系统多方案优化运行研究[J].电网与清洁能源,2025,41(2):100-106. |
| LIU S L, WEI J X, TIAN N .Research on the multi-scheme optimal operation of the pumped storage-wind-solar-thermal combined power generation system based on rational abandonment of energy[J].Power System and Clean Energy,2025,41(2):100-106. | |
| [5] | 何良策,王宇,卢志刚,等 .面向多区域综合能源系统低碳运行的共享电-氢储能优化配置[J].电力系统保护与控制,2025,53(18):52-63. |
| HE L C, WANG Y, LU Z G,et al .Optimal allocation of shared electricity-hydrogen storage for low-carbon operation of multiple regional integrated energy systems[J].Power System Protection and Control,2025,53(18):52-63. | |
| [6] | 李湃,卢慧,李驰,等 .多能互补发电系统电/热储能容量双层优化配置方法[J].中国电力,2025,58(3):55-64. |
| LI P, LU H, LI C,et al .Bi-level capacity optimization for battery/thermal energy storage system in multi-energy complementary power generation system[J].Electric Power,2025,58(3):55-64. | |
| [7] | 周保中,刘敦楠,张继广,等 .“风光火一体化”多能互补项目优化配置研究[J].发电技术,2022,43(1):10-18. doi:10.12096/j.2096-4528.pgt.21101 |
| ZHOU B Z, LIU D N, ZHANG J G,et al .Research on optimal allocation of multi-energy complementary project of wind-solar-thermal integration[J].Power Generation Technology,2022,43(1):10-18. doi:10.12096/j.2096-4528.pgt.21101 | |
| [8] | 梅惠,高丙团,曹泽宇,等 .含CSP电站的风光火储联合外送系统优化配置[J].太阳能学报,2022,43(12):124-133. |
| MEI H, GAO B T, CAO Z Y,et al .Optimal allocation of wind-photovoltaic-thermal-storage combined transmission system with CSP station[J].Acta Energiae Solaris Sinica,2022,43(12):124-133. | |
| [9] | 张爱军,刘会强,慕腾,等 .高比例新能源大送端基地风光火储容量优化配置[J/OL].现代电力,1-13[2025-09-10]. . |
| ZHANG A J, LIU H Q, MU T,et al .Optimal capacity allocation of wind-photovoltaic-thermal-storage system in high proportion new energy sending terminal base[J/OL].Modern Electric Power,1-13[2025-09-10]. . | |
| [10] | 张立伟,冯任卿,张毓清,等 .考虑火电灵活性改造及深度调峰的风光火储系统容量优化配置[J].现代电力,2025,42(4):722-733. |
| ZHANG L W, FENG R Q, ZHANG Y Q,et al .Optimal configuration of wind-solar-thermal-storage system capacity considering flexible reconstruction of thermal power and deep peak shaving[J].Modern Electric Power,2025,42(4):722-733. | |
| [11] | 高可,王鹏,梁楠,等 .大型能源基地风光火储系统联合运营与外送优化[J/OL].电网技术,1-15[2025-09-10]. . |
| GAO K, WANG P, LIANG N,et al .Joint operation and external transmission optimization of wind,solar,thermal and energy storage systems in large-scale energy bases research[J/OL].Power System Technology,1-15[2025-09-10]. . | |
| [12] | 吕游,郭子铭,李泽洋,等 .基于模糊优化的多场景风光火储优化调度[J/OL].动力工程学报,1-11[2025-09-10]. . |
| LÜ Y, GUO Z M, LI Z Y,et al .Multi-scenario wind-solar-thermal-storage optimal scheduling based on fuzzy optimization[J/OL].Journal of Chinese Society of Power Engineering,1-11[2025-09-10]. . | |
| [13] | 王进仕,田昕,王凯,等 .“沙戈荒”地区风光火储多能互补系统日前调度优化研究[J].榆林学院学报,2025,35(2):1-6. |
| WANG J S, TIAN X, WANG K,et al . Day-ahead scheduling optimization for the wind-solar-thermal-storage multi-energy complementary systems in the desert-gobi-wasteland region[J].Journal of Yulin University,2025,35(2):1-6. | |
| [14] | FAN G, PENG C, WANG X,et al .Optimal scheduling of integrated energy system considering renewable energy uncertainties based on distributionally robust adaptive MPC[J].Renewable Energy,2024,226:120457. doi:10.1016/j.renene.2024.120457 |
| [15] | 袁浩锋,柯杨,向昆,等 .风光火储多源系统参与调峰的分层优化调度研究[J].水力发电,2025,51(5):98-103. |
| YUAN H F, KE Y, XIANG K,et al .Hierarchical optimized scheduling of multi-source systems with wind-solar-thermal-energy storage considering peak regulation[J].Water Power,2025,51(5):98-103. | |
| [16] | 李博伟 .风光火热储能源基地功率优化调度研究[J].电工技术,2025(20):71-79. |
| LI B W .Research on power optimised scheduling of wind-PV-thermal-heat-energy storage system[J].Electrical Engineering,2025(20):71-79. | |
| [17] | 李滨,陆光榛,李佩杰,等 .“风光水火储一体化”能源基地有功功率实时协调控制策略[J].电力系统自动化,2026,50(2):188-203. |
| LI B, LU G Z, LI P J,et al .Real-time active power regulation and control strategy for wind-photovoltaic-hydro-thermal-storage integrated energy base[J].Automation of Electric Power Systems,2026,50(2):188-203. | |
| [18] | 杨银国,冯胤颖,魏韡,等 .基于可消纳区间的风-火-储大基地日前-实时协同调度[J].上海交通大学学报,2025,59(9):1270-1280. |
| YANG Y G, FENG Y Y, WEI W,et al .Coordinated day-ahead scheduling and real-time dispatch of a wind-thermal-storage energy base considering flexibility interval[J].Journal of Shanghai Jiao Tong University,2025,59(9):1270-1280. | |
| [19] | 叶泽,李湘旗,姜飞,等 .考虑最优弃能率的风光火储联合系统分层优化经济调度[J].电网技术,2021,45(6):2270-2279. doi:10.13335/j.1000-3673.pst.2020.1116 |
| YE Z, LI X Q, JIANG F,et al .Hierarchical optimization economic dispatching of combined wind-PV-thermal-energy storage system considering the optimal energy abandonment rate[J].Power System Technology,2021,45(6):2270-2279. doi:10.13335/j.1000-3673.pst.2020.1116 | |
| [20] | 李铁,李正文,杨俊友,等 .计及调峰主动性的风光水火储多能系统互补协调优化调度[J].电网技术,2020,44(10):3622-3630. |
| LI T, LI W Z, YANG J Y,et al .Coordination and optimal scheduling of multi-energy complementary system considering peak regulation initiative[J].Power System Technology,2020,44(10):3622-3630. | |
| [21] | 张磊,郭语,石嘉豪,等 .风火储一体化电站功率特性研究[J].动力工程学报,2022,42(6):568-574. |
| ZHANG L, GUO Y, SHI J H,et al .Study on power characteristics of wind-coal-battery coupling integrated power stations[J].Journal of Chinese Society of Power Engineering,2022,42(6):568-574. | |
| [22] | HANG M, XU W, ZHAO W .Combined optimal dispatching of wind-light-fire-storage considering electricity price response and uncertainty of wind and photovoltaic power[J].Energy Reports,2023,9(S1):790-798. doi:10.1016/j.egyr.2022.11.099 |
| [23] | 吴庆泽,吕丽霞,刘长良,等 .多模式风光火储系统多目标优化调度[J].华北电力大学学报,2021,45(6):2270-2279. |
| WU Q Z, LV L X, LIU C L,et al .Multi-objective optimal scheduling of multi-mode wind-solar-thermal power storage system[J].Journal of North China Electric Power University,2021,45(6):2270-2279. | |
| [24] | LIU Z, CUI Y, WANG J,et al .Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties[J].Energy,2022,254:124399. doi:10.1016/j.energy.2022.124399 |
| [25] | 王荣茂,刘淼,张晔,等 .基于碳交易与碳捕捉均衡成本的风光火储系统低碳调度技术[J].可再生能源,2023,41(4):562-568. |
| WANG R M, LIU M, ZHANG Y,et al .Low carbon scheduling technology for wind-PV-thermal-storage system based on carbon trading and carbon capture cost balance[J].Renewable Energy Resources,2023,41(4):562-568. | |
| [26] | 朴政国,周京华 .光伏发电原理、技术及其应用[M].北京:机械工业出版社,2020:30-42. doi:10.1109/icot51877.2020.9468733 |
| PIAO Z G, ZHOU J H .Principle,technology and application of photovoltaic power generation[M].Beijing:China Machine Press,2020:30-42. doi:10.1109/icot51877.2020.9468733 | |
| [27] | 刘航航,张利孟,孙加艳 .不同电力市场机制下煤电机组深度调峰能耗分析研究[J].能源与环保,2024,46(5):210-216. |
| LIU H H, ZHANG L M, SUN J Y .Analysis and research on energy consumption of coal-fired power units for deep peak shaving under different electricity market mechanisms[J].China Energy and Environmental Protection,2024,46(5):210-216. | |
| [28] | 马达夫,马元礼,林晓真,等 .新一代煤电背景下机组最小出力与煤耗的分析研究[J/OL].动力工程学报,1-12[2025-12-31].. |
| MA D F, MA Y L, LIN X Z,et al .Analytical study of the minimum output and coal consumption of units under the background of the next-generation coal-fired power generation[J/OL].Journal of Chinese Society of Power Engineering,1-12[2025-12-31].. | |
| [29] | 国家能源局 .国家能源局关于做好新能源消纳工作 保障新能源高质量发展的通知[EB/OL].(2024-05-28)[2025-09-10].. |
| National Energy Administration .Notice of the National Energy Administration on doing a good job in new energy consumption and ensuring the high-quality development of new energy[EB/OL].(2024-05-28)[2025-09-10].. |
| [1] | 王志康, 张儒琪, 袁少可, 韩东江, 隋军. 有机朗肯-蒸汽压缩循环系统研究进展[J]. 发电技术, 2025, 46(6): 1059-1073. |
| [2] | 郑杨, 任禹丞, 王雨薇, 徐丁吉, 杨慧敏. 基于改进云模型的区域电网电能替代综合效益评价[J]. 发电技术, 2025, 46(2): 399-408. |
| [3] | 刘忠, 黄彦铭, 朱光明, 邹淑云. 含风-光-电氢混合储能的多微电网系统容量优化配置方法[J]. 发电技术, 2025, 46(2): 240-251. |
| [4] | 赵长红, 张李琳, 邵云姝, 袁家海, 邓祎璐. 发电上市公司低碳信息披露与低碳转型效率研究[J]. 发电技术, 2024, 45(6): 1121-1134. |
| [5] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
| [6] | 康俊杰, 赵春阳, 周国鹏, 赵良. 风光水火储多能互补示范项目发展现状及实施路径研究[J]. 发电技术, 2023, 44(3): 407-416. |
| [7] | 陈宜, 徐英新, 徐东杰, 高翔. 终端型多能互补系统的最优配置与性能分析[J]. 发电技术, 2022, 43(6): 823-833. |
| [8] | 周保中, 刘敦楠, 张继广, 李忆, 徐尔丰, 毕圣. “风光火一体化”多能互补项目优化配置研究[J]. 发电技术, 2022, 43(1): 10-18. |
| [9] | 刘兰华, 王瑞林, 洪慧. 塔式太阳能辅助燃气蒸汽联合循环钙基碳捕集系统设计[J]. 发电技术, 2021, 42(4): 517-524. |
| [10] | 邱国华,魏宏鸽,梁秀进,李壮,王丰吉,朱跃. 火电机组脱硫超低排放运行能耗分析与节能运行展望[J]. 发电技术, 2020, 41(5): 510-516. |
| [11] | 张伟波,谢玉荣,杨帆,周宇昊,王世朋. 多能互补分布式综合供能系统及典型开发方案研究[J]. 发电技术, 2020, 41(3): 245-251. |
| [12] | 欧阳斌,袁志昌,陆超,屈鲁,李东东. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术, 2020, 41(1): 19-29. |
| [13] | 刘志超,王洪彬,沙浩,杨金澍,曹生现. 我国风电利用技术现状及其前景分析[J]. 发电技术, 2019, 40(4): 389-395. |
| [14] | 周宇昊, 张海珍, 宋胜男. 多能互补分布式能源实验平台系统关键技术研究[J]. 发电技术, 2017, 38(6): 5-9,37. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||