发电技术 ›› 2025, Vol. 46 ›› Issue (6): 1184-1191.DOI: 10.12096/j.2096-4528.pgt.24071

• 储能 • 上一篇    

低气压环境下固体蓄热材料的蓄释热特性研究

陈梦东1, 康伟1, 邓占锋1, 赵文强2, 雷国斌2   

  1. 1.北京智慧能源研究院,北京市 昌平区 102209
    2.国网青海省电力公司电力科学研究院,青海省 西宁市 810008
  • 收稿日期:2024-07-15 修回日期:2024-10-13 出版日期:2025-12-31 发布日期:2025-12-25
  • 通讯作者: 邓占锋
  • 作者简介:陈梦东(1985),男,博士,高级工程师,研究方向为固体储热技术和PEM制氢技术,buaacmd@163.com
    康伟(1983),男,高级工程师,研究方向为储热装置,kangwei@bies.hrl.ac.cn
    邓占锋(1976),男,教授级高级工程师,研究方向为储热技术和制氢技术,本文通信作者,dengzhanfeng@bise.hrl.ac.cn;
    赵文强(1985),男,高级工程师,主要研究方向为调相机运检、网源协调、综合能源等技术,zwqdt@126.com
    雷国斌(1988),男,高级工程师,研究方向为电力工程技术,504415244@qq.com
  • 基金资助:
    国网公司科技项目(5419-202134244A-0-0-00)

Research on Heat Storage and Release Characteristics of Solid Heat Storage Materials in Low-Pressure Environments

Mengdong CHEN1, Wei KANG1, Zhanfeng DENG1, Wenqiang ZHAO2, Guobin LEI2   

  1. 1.Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
    2.State Grid Electric Power Company of Qinghai Province Electric Power Research Institute, Xining 810008, Qinghai Province, China
  • Received:2024-07-15 Revised:2024-10-13 Published:2025-12-31 Online:2025-12-25
  • Contact: Zhanfeng DENG
  • Supported by:
    State Grid Corporation Technology Project(5419-202134244A-0-0-00)

摘要:

目的 在高海拔地区应用固体蓄热装置时,空气稀薄会导致其蓄热和释热性能有较大变化,为此,提出了一种测试固体蓄热材料在高海拔地区低气压环境下蓄释热特性的方法。 方法 搭建了由空气环路、水环路及数据采集单元组成的低气压环境模拟实验台,对2块蓄热砖组成的蓄热单元开展了压力范围为40~101 kPa的蓄热和释热实验,通过记录入口空气温度、蓄热砖的温度变化,分析低气压环境下蓄热材料的蓄热速率和释热速率,比较不同气压下空气与蓄热砖的传热性能。 结果 与101 kPa工况相比,80 kPa和40 kPa工况的蓄热时间均有明显增加,且空气压力越低,所需要的蓄热时间越长;同时,80 kPa和40 kPa的环境压力下蓄热砖的平均蓄热速率分别降低约15%和55%;释热时,80 kPa和40 kPa的释热时间分别增加了26.1%和135.4%。 结论 空气压力对蓄热砖的蓄热和释热速率均有重要影响,实验结果可为设计应用于高海拔地区的固体蓄热装置提供指导。

关键词: 可再生能源, 储能, 蓄热材料, 蓄热特性, 释热特性, 温度分布, 储热技术

Abstract:

Objectives When solid heat storage devices are applied in high-altitude areas, the thin air leads to significant variations in their heat storage and release performance. To address this, a method for testing the heat storage and release characteristics of solid heat storage materials in low-pressure environments in high-altitude areas is proposed. Methods A test bench for low-pressure environment simulation is constructed, consisting of an air loop unit, a water loop unit, and a data acquisition unit. Heat storage and release tests are conducted on a heat storage unit composed of two heat storage bricks under pressures ranging from 40 kPa to 101 kPa. By recording the inlet air temperature and the temperature variations of the heat storage bricks, the heat storage and release rates of the heat storage materials in low-pressure environments are analyzed, and the heat transfer performance between the air and heat storage bricks under different pressures is compared. Results Compared to the 101 kPa condition, the heat storage time increases significantly under both 80 kPa and 40 kPa conditions, with lower air pressure requiring longer heat storage time. Additionally, the average heat storage rates of the heat storage bricks at 80 kPa and 40 kPa decrease by approximately 15% and 55%, respectively. During heat release, the heat release time increases by 26.1% at 80 kPa and 135.4% at 40 kPa. Conclusions Air pressure significantly affects the heat storage and release rates of heat storage bricks, the experimental results can provide guidance for the design of solid heat storage devices applied in high-altitude areas.

Key words: renewable energy, energy storage, heat storage materials, heat storage characteristics, heat release characteristics, temperature distribution, heat storage technology

中图分类号: