发电技术 ›› 2026, Vol. 47 ›› Issue (1): 185-194.DOI: 10.12096/j.2096-4528.pgt.260117

• 新型电力系统 • 上一篇    

基于改进支持向量机的有源配电网单相断线故障检测方法

吴宇轩, 欧阳森, 杨向宇, 陈汉栋, 黎人玮, 廖键   

  1. 华南理工大学电力学院,广东省 广州市 510640
  • 收稿日期:2025-04-16 修回日期:2025-07-28 出版日期:2026-02-28 发布日期:2026-02-12
  • 作者简介:吴宇轩(2001),男,硕士研究生,研究方向为配电网断线检测与定位,724174828@qq.com
    杨向宇(1963),男,博士,教授,研究方向为电气传动系统及其智能控制, yangxyu@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52177085)

A Single-Phase Line-Break Fault Detection Method for Active Distribution Networks Based on Improved Support Vector Machine

Yuxuan WU, Sen OUYANG, Xiangyu YANG, Handong CHEN, Renwei LI, Jian LIAO   

  1. School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, Guangdong Province, China
  • Received:2025-04-16 Revised:2025-07-28 Published:2026-02-28 Online:2026-02-12
  • Supported by:
    National Natural Science Foundation of China(52177085)

摘要:

目的 断线故障的及时、准确检测对保障配电网的正常安全运行至关重要,而目前的单相断线故障检测的传统判据在有源配电网中的应用存在一定的局限性,因此,提出了一种基于改进支持向量机对多种电气特征量进行融合的单相断线故障检测方法。 方法 首先,建立了兼具启动判据、传统判据、有源判据的电气特征量指标体系。其次,通过开关量化法对启动判据进行处理。然后,通过核主成分分析方法从启动判据以外的特征指标体系中筛除低贡献率的特征指标。最后,将降维后的数据输入支持向量机,通过麻雀搜索算法完成支持向量机参数优化,得到断线故障检测模型。 结果 在改进IEEE15节点模型上进行的仿真算例表明,所提方法可将有效实现特征量的降维,较单一判据提升了8.87%的检测准确率。 结论 该方法解决了单相断线故障检测的传统判据容易失效的问题,能有效完成不同场景下的故障检测。

关键词: 有源配电网, 单相断线, 支持向量机, 麻雀搜索算法, 核主成分分析

Abstract:

Objectives Timely and accurate detection of line-break faults is crucial for ensuring the normal and safe operation of distribution networks. However, the application of traditional criteria for single-phase line-break fault detection in active distribution networks has certain limitations. Therefore, a single-phase line-break fault detection method based on an improved support vector machine and integrating multiple electrical characteristic quantities is proposed. Methods First, an electrical characteristic index system incorporating startup criteria, traditional criteria, and active criteria is established. Second, the startup criteria are processed using the switching quantization method. Subsequently, kernel principal component analysis is employed to eliminate low-contribution feature indicators from the characteristic index system excluding the startup criteria. Finally, the dimensionality-reduced data are input into the support vector machine, and the sparrow search algorithm is utilized to optimize the parameters of the support vector machine, thereby obtaining the line-break fault detection model. Results Simulation case studies conducted on a modified IEEE 15-node model demonstrate that the proposed method effectively realizes dimensionality reduction of the characteristic quantities and improves the detection accuracy by 8.87% compared to using a single criterion. Conclusions The proposed method solves the problem that traditional criteria for single-phase line-break fault detection are prone to failure, and can effectively achieve fault detection under different scenarios.

Key words: active distribution network, single-phase line-break, support vector machine, sparrow search algorithm, kernel principal component analysis

中图分类号: