发电技术 ›› 2025, Vol. 46 ›› Issue (5): 996-1004.DOI: 10.12096/j.2096-4528.pgt.24008

• 发电及环境保护 • 上一篇    下一篇

基于双向长短期记忆网络和最小二乘支持向量机模型的SCR脱硝反应器进口截面NO x 浓度预测

曾稳根, 陈冬林, 唐明珠, 汪淑奇, 胡章茂   

  1. 长沙理工大学能源与动力工程学院,湖南省 长沙市 410114
  • 收稿日期:2024-06-28 修回日期:2024-10-02 出版日期:2025-10-31 发布日期:2025-10-23
  • 作者简介:曾稳根(1997),男,硕士研究生,从事喷氨智能控制策略优化研究,zeng.wengen@foxmail.com
    陈冬林(1963),男,博士,教授,从事锅炉及燃烧理论与技术研究应用、燃烧污染物减排技术等研究,本文通信作者,chendl_01@126.com
    唐明珠(1983),男,博士,副教授,从事故障诊断与机器学习及应用研究,tmzhu@163.com
    汪淑奇(1966),男,硕士,副教授,从事锅炉燃烧与优化控制等研究,wangsq_mail@163.com
    胡章茂(1985),男,博士,副教授,从事高效低污染燃烧技术等研究,huzhangmao@163.com
  • 基金资助:
    国家自然科学基金项目(62173050)

Prediction of NO x Concentration at Inlet Section of SCR Denitrification Reactor Based on Bidirectional Long Short-Term Memory Network and Least Squares Support Vector Machine Model

Wengen ZENG, Donglin CHEN, Mingzhu TANG, Shuqi WANG, Zhangmao HU   

  1. School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan Province, China
  • Received:2024-06-28 Revised:2024-10-02 Published:2025-10-31 Online:2025-10-23
  • Supported by:
    National Natural Science Foundation of China(62173050)

摘要:

目的 为解决目前选择性催化还原(selective catalytic reduction,SCR)脱硝喷氨控制系统喷氨指令与SCR反应器进口截面NO x 浓度动态适配迟延及喷氨精度不足问题,构建了某台660 WM燃煤机组SCR脱硝喷氨反应器进口截面NO x 浓度预测模型。 方法 结合燃煤机组烟道结构对燃煤机组采样数据进行预处理,然后采用双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)对SCR脱硝喷氨反应器进口截面NO x 浓度进行初步预测,并使用最小二乘支持向量机(least squares support vector machine,LSSVM)对预测残差进行修正,从而最大程度减小模型的预测误差。最后,为评估所建模型的预测性能,进行了仿真与现场同步验证。 结果 该模型在机组各负荷段及变煤质工况下对SCR反应器入口截面NO x 浓度的预测具有良好的效果,同步验证预测误差仅为5.772 mg/m3,并且具备8.5 s的提前预测能力。 结论 该预测模型可为喷氨控制系统提供精确的前馈信息。

关键词: 燃煤机组, 数据预处理, 神经网络预测, 脱硝, 双向长短期记忆网络(BiLSTM), 最小二乘支持向量机(LSSVM), 选择性催化还原(SCR)反应器, NO x 浓度预测

Abstract:

Objectives To address the delayed dynamic adaptation between the ammonia injection command and the NO x concentration at the inlet section of the selective catalytic reduction (SCR) denitrification reactor, as well as the insufficient ammonia injection accuracy in current SCR denitrification ammonia injection control systems, a prediction model for the NO x concentration at the inlet section of the SCR denitrification reactor of a 660 MW coal-fired unit is developed. Methods The sampled data from the coal-fired unit are preprocessed in combination with the flue duct structure of the unit. Subsequently, a bidirectional long short-term memory network (BiLSTM) is applied to generate a preliminary prediction of the NO x concentration at the inlet section of the SCR denitrification ammonia injection reactor. Next, a least squares support vector machine (LSSVM) is utilized to correct the prediction residuals, thereby minimizing the prediction error of the model to the greatest extent. Finally, in order to evaluate the prediction performance of the proposed model, simulation and real-time validation are carried out. Results This model exhibits excellent performance in predicting the NO x concentration at the inlet section of the SCR reactor under various unit load conditions and variable coal quality conditions. The prediction error in real-time validation is only 5.772 mg/m3, with an advance prediction capability of 8.5 s. Conclusions This prediction model can provide accurate feedforward information for the ammonia injection control system.

Key words: coal-fired unit, data preprocessing, neural network prediction, denitrification, bidirectional long short-term memory network (BiLSTM), least squares support vector machine (LSSVM), selective catalytic reduction (SCR) reactor, NO x concentration prediction

中图分类号: