发电技术 ›› 2025, Vol. 46 ›› Issue (5): 1032-1040.DOI: 10.12096/j.2096-4528.pgt.24046
• 发电及环境保护 • 上一篇
屠楠1, 王驰宇1, 刘晓群1, 方嘉宾2
收稿日期:2024-03-23
修回日期:2024-04-28
出版日期:2025-10-31
发布日期:2025-10-23
作者简介:基金资助:Nan TU1, Chiyu WANG1, Xiaoqun LIU1, Jiabin FANG2
Received:2024-03-23
Revised:2024-04-28
Published:2025-10-31
Online:2025-10-23
Supported by:摘要:
目的 颗粒停留时间分布(residence time distribution,RTD)是评估流化床内气固混合程度的重要指标,但其影响因素较多,调控难度较大。为合理设计并优化连续进出料鼓泡流化床,需探究结构及操作参数对颗粒RTD的影响规律。 方法 基于欧拉双流体模型耦合组分输运方程,建立了三维矩形流化床颗粒RTD数值计算模型,设计了25组正交模拟试验,探究了挡板结构、数量、流通宽度及颗粒进口质量流量、表观气速对颗粒RTD的影响。 结果 颗粒进口质量流量是影响颗粒平均停留时间的最显著因素,其次为表观气速,且二者皆与颗粒平均停留时间呈负相关。挡板数量和质量流量是影响RTD无量纲方差的主要和次要因素,且二者的增加都会降低无量纲方差,减弱流化床返混程度,使流动趋向于平推流。 结论 通过调节颗粒质量流量可有效调控颗粒平均停留时间,挡板数量是设计流化床的关键结构参数。研究结果可为流化床设计及优化提供理论指导。
中图分类号:
屠楠, 王驰宇, 刘晓群, 方嘉宾. 基于正交试验的流化床颗粒停留时间分布特性数值分析[J]. 发电技术, 2025, 46(5): 1032-1040.
Nan TU, Chiyu WANG, Xiaoqun LIU, Jiabin FANG. Numerical Analysis of Particle Residence Time Distribution Characteristics in Fluidized Bed Based on Orthogonal Test[J]. Power Generation Technology, 2025, 46(5): 1032-1040.
| 参数 | 数值 |
|---|---|
| 颗粒密度ρs/(kg/m3) | 2 600 |
| 颗粒粒径ds/μm | 200 |
| 示踪颗粒密度ρtr/(kg/m3) | 1 405 |
| 示踪颗粒粒径dtr/μm | 200 |
| 空气密度ρg/(kg/m3) | 1.225 |
| 空气黏度μg/(Pa·s) | 1.789 4×10-5 |
| 临界流化速度Umf/(m/s) | 0.036 8 |
表1 物性参数
Tab. 1 Physical parameters
| 参数 | 数值 |
|---|---|
| 颗粒密度ρs/(kg/m3) | 2 600 |
| 颗粒粒径ds/μm | 200 |
| 示踪颗粒密度ρtr/(kg/m3) | 1 405 |
| 示踪颗粒粒径dtr/μm | 200 |
| 空气密度ρg/(kg/m3) | 1.225 |
| 空气黏度μg/(Pa·s) | 1.789 4×10-5 |
| 临界流化速度Umf/(m/s) | 0.036 8 |
| 水平 | 因素 | ||||
|---|---|---|---|---|---|
| A(结构) | B(N/个) | C(Sf/mm) | D(Gs/(kg/h)) | E(U/(m/s)) | |
| 1 | 溢流板 | 1 | 2 | 26.25 | 4Umf |
| 2 | 底流板 | 5 | 4 | 36.25 | 6Umf |
| 3 | 侧流板 | 9 | 6 | 46.25 | 8Umf |
| 4 | — | 13 | 8 | 56.25 | 10Umf |
| 5 | — | — | 10 | 66.25 | — |
表2 正交模拟试验5因素5水平
Tab. 2 Five factors and five levels of orthogonal simulation test
| 水平 | 因素 | ||||
|---|---|---|---|---|---|
| A(结构) | B(N/个) | C(Sf/mm) | D(Gs/(kg/h)) | E(U/(m/s)) | |
| 1 | 溢流板 | 1 | 2 | 26.25 | 4Umf |
| 2 | 底流板 | 5 | 4 | 36.25 | 6Umf |
| 3 | 侧流板 | 9 | 6 | 46.25 | 8Umf |
| 4 | — | 13 | 8 | 56.25 | 10Umf |
| 5 | — | — | 10 | 66.25 | — |
| 试验编号 | 因素 | 评价指标 | tav,m/s | (tm/tav,m)/% | |||||
|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | E | tm/s | σ | |||
| 1 | 1 | 3 | 3 | 3 | 2 | 161.11 | 0.173 | 173.56 | 92.83 |
| 2 | 2 | 2 | 1 | 5 | 2 | 119.87 | 0.155 | 127.16 | 94.27 |
| 3 | 1 | 2 | 4 | 1 | 3 | 240.15 | 0.438 | 272.63 | 89.19 |
| 4 | 1 | 4 | 4 | 4 | 1 | 150.93 | 0.085 | 157.57 | 95.79 |
| 5 | 1 | 1 | 1 | 1 | 1 | 306.47 | 0.494 | 348.70 | 87.89 |
| 6 | 2 | 1 | 5 | 4 | 4 | 108.60 | 0.478 | 123.05 | 88.26 |
| 7 | 1 | 1 | 3 | 5 | 1 | 127.25 | 0.386 | 139.70 | 91.09 |
| 8 | 2 | 3 | 4 | 5 | 4 | 98.26 | 0.120 | 102.94 | 95.46 |
| 9 | 3 | 3 | 1 | 4 | 3 | 135.46 | 0.078 | 139.51 | 97.10 |
| 10 | 1 | 3 | 5 | 2 | 1 | 219.77 | 0.167 | 236.55 | 96.35 |
| 11 | 3 | 1 | 4 | 2 | 2 | 199.48 | 0.557 | 228.90 | 87.15 |
| 12 | 3 | 2 | 5 | 3 | 1 | 181.17 | 0.205 | 196.06 | 92.41 |
| 13 | 2 | 3 | 2 | 1 | 1 | 316.39 | 0.143 | 336.90 | 93.92 |
| 14 | 3 | 1 | 3 | 1 | 4 | 211.35 | 0.564 | 247.36 | 85.44 |
| 15 | 1 | 2 | 2 | 2 | 4 | 168.99 | 0.305 | 186.08 | 90.82 |
| 16 | 2 | 4 | 3 | 2 | 3 | 187.36 | 0.106 | 196.83 | 95.19 |
| 17 | 2 | 1 | 2 | 3 | 3 | 140.21 | 0.504 | 161.65 | 86.74 |
| 18 | 2 | 1 | 4 | 3 | 1 | 173.70 | 0.482 | 201.56 | 86.18 |
| 19 | 3 | 4 | 2 | 5 | 1 | 132.47 | 0.042 | 135.53 | 97.74 |
| 20 | 1 | 1 | 2 | 4 | 2 | 127.70 | 0.518 | 148.23 | 86.15 |
| 21 | 2 | 4 | 5 | 1 | 2 | 276.57 | 0.180 | 298.91 | 92.53 |
| 22 | 1 | 4 | 1 | 3 | 4 | 138.79 | 0.089 | 144.57 | 96.00 |
| 23 | 1 | 1 | 5 | 5 | 3 | 101.14 | 0.493 | 115.10 | 87.87 |
| 24 | 2 | 2 | 3 | 4 | 1 | 153.66 | 0.283 | 172.05 | 89.32 |
| 25 | 2 | 1 | 1 | 2 | 1 | 220.84 | 0.451 | 252.60 | 87.43 |
表3 混合型正交试验方案及结果
Tab. 3 Mixed orthogonal test scheme and results
| 试验编号 | 因素 | 评价指标 | tav,m/s | (tm/tav,m)/% | |||||
|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | E | tm/s | σ | |||
| 1 | 1 | 3 | 3 | 3 | 2 | 161.11 | 0.173 | 173.56 | 92.83 |
| 2 | 2 | 2 | 1 | 5 | 2 | 119.87 | 0.155 | 127.16 | 94.27 |
| 3 | 1 | 2 | 4 | 1 | 3 | 240.15 | 0.438 | 272.63 | 89.19 |
| 4 | 1 | 4 | 4 | 4 | 1 | 150.93 | 0.085 | 157.57 | 95.79 |
| 5 | 1 | 1 | 1 | 1 | 1 | 306.47 | 0.494 | 348.70 | 87.89 |
| 6 | 2 | 1 | 5 | 4 | 4 | 108.60 | 0.478 | 123.05 | 88.26 |
| 7 | 1 | 1 | 3 | 5 | 1 | 127.25 | 0.386 | 139.70 | 91.09 |
| 8 | 2 | 3 | 4 | 5 | 4 | 98.26 | 0.120 | 102.94 | 95.46 |
| 9 | 3 | 3 | 1 | 4 | 3 | 135.46 | 0.078 | 139.51 | 97.10 |
| 10 | 1 | 3 | 5 | 2 | 1 | 219.77 | 0.167 | 236.55 | 96.35 |
| 11 | 3 | 1 | 4 | 2 | 2 | 199.48 | 0.557 | 228.90 | 87.15 |
| 12 | 3 | 2 | 5 | 3 | 1 | 181.17 | 0.205 | 196.06 | 92.41 |
| 13 | 2 | 3 | 2 | 1 | 1 | 316.39 | 0.143 | 336.90 | 93.92 |
| 14 | 3 | 1 | 3 | 1 | 4 | 211.35 | 0.564 | 247.36 | 85.44 |
| 15 | 1 | 2 | 2 | 2 | 4 | 168.99 | 0.305 | 186.08 | 90.82 |
| 16 | 2 | 4 | 3 | 2 | 3 | 187.36 | 0.106 | 196.83 | 95.19 |
| 17 | 2 | 1 | 2 | 3 | 3 | 140.21 | 0.504 | 161.65 | 86.74 |
| 18 | 2 | 1 | 4 | 3 | 1 | 173.70 | 0.482 | 201.56 | 86.18 |
| 19 | 3 | 4 | 2 | 5 | 1 | 132.47 | 0.042 | 135.53 | 97.74 |
| 20 | 1 | 1 | 2 | 4 | 2 | 127.70 | 0.518 | 148.23 | 86.15 |
| 21 | 2 | 4 | 5 | 1 | 2 | 276.57 | 0.180 | 298.91 | 92.53 |
| 22 | 1 | 4 | 1 | 3 | 4 | 138.79 | 0.089 | 144.57 | 96.00 |
| 23 | 1 | 1 | 5 | 5 | 3 | 101.14 | 0.493 | 115.10 | 87.87 |
| 24 | 2 | 2 | 3 | 4 | 1 | 153.66 | 0.283 | 172.05 | 89.32 |
| 25 | 2 | 1 | 1 | 2 | 1 | 220.84 | 0.451 | 252.60 | 87.43 |
| 评价指标 | 极差 | 因素 | ||||
|---|---|---|---|---|---|---|
| A | B | C | D | E | ||
| 颗粒平均停留时间tm/s | K1 | 1 742.33 | 1 716.79 | 921.46 | 1 350.96 | 1 982.70 |
| K2 | 1 795.53 | 863.86 | 885.78 | 996.47 | 884.76 | |
| K3 | 859.94 | 931.02 | 840.75 | 794.80 | 804.33 | |
| K4 | — | 886.13 | 862.54 | 676.37 | 726.01 | |
| K5 | — | — | 887.27 | 579.01 | — | |
| k1 | 174.23 | 171.67 | 184.29 | 270.19 | 198.27 | |
| k2 | 179.55 | 172.77 | 177.15 | 199.29 | 176.95 | |
| k3 | 171.98 | 186.20 | 168.15 | 158.99 | 160.86 | |
| k4 | — | 177.22 | 172.50 | 135.27 | 145.20 | |
| k5 | — | — | 177.45 | 115.80 | — | |
| R | 7.56 | 14.53 | 16.14 | 154.39 | 53.07 | |
| 主次顺序 | D>E>C>B>A | |||||
| 最优水平 | A2 | B3 | C1 | D1 | E1 | |
无量纲 方差σ | K1 | 3.147 | 4.928 | 1.268 | 1.818 | 2.738 |
| K2 | 2.903 | 1.385 | 1.512 | 1.586 | 1.583 | |
| K3 | 1.446 | 0.680 | 1.513 | 1.454 | 1.619 | |
| K4 | — | 0.503 | 1.682 | 1.441 | 1.556 | |
| K5 | — | — | 1.522 | 1.196 | — | |
| k1 | 0.314 | 0.492 | 0.253 | 0.363 | 0.273 | |
| k2 | 0.290 | 0.277 | 0.302 | 0.317 | 0.316 | |
| k3 | 0.289 | 0.136 | 0.303 | 0.290 | 0.323 | |
| k4 | — | 0.100 | 0.336 | 0.288 | 0.311 | |
| k5 | — | — | 0.304 | 0.239 | — | |
| R | 0.025 | 0.392 | 0.083 | 0.124 | 0.050 | |
| 主次顺序 | B>D>C>E>A | |||||
| 最优水平 | A2 | B4 | C1 | D5 | E1 | |
表4 正交模拟试验极差分析结果
Tab. 4 Range analysis results of orthogonal simulation test
| 评价指标 | 极差 | 因素 | ||||
|---|---|---|---|---|---|---|
| A | B | C | D | E | ||
| 颗粒平均停留时间tm/s | K1 | 1 742.33 | 1 716.79 | 921.46 | 1 350.96 | 1 982.70 |
| K2 | 1 795.53 | 863.86 | 885.78 | 996.47 | 884.76 | |
| K3 | 859.94 | 931.02 | 840.75 | 794.80 | 804.33 | |
| K4 | — | 886.13 | 862.54 | 676.37 | 726.01 | |
| K5 | — | — | 887.27 | 579.01 | — | |
| k1 | 174.23 | 171.67 | 184.29 | 270.19 | 198.27 | |
| k2 | 179.55 | 172.77 | 177.15 | 199.29 | 176.95 | |
| k3 | 171.98 | 186.20 | 168.15 | 158.99 | 160.86 | |
| k4 | — | 177.22 | 172.50 | 135.27 | 145.20 | |
| k5 | — | — | 177.45 | 115.80 | — | |
| R | 7.56 | 14.53 | 16.14 | 154.39 | 53.07 | |
| 主次顺序 | D>E>C>B>A | |||||
| 最优水平 | A2 | B3 | C1 | D1 | E1 | |
无量纲 方差σ | K1 | 3.147 | 4.928 | 1.268 | 1.818 | 2.738 |
| K2 | 2.903 | 1.385 | 1.512 | 1.586 | 1.583 | |
| K3 | 1.446 | 0.680 | 1.513 | 1.454 | 1.619 | |
| K4 | — | 0.503 | 1.682 | 1.441 | 1.556 | |
| K5 | — | — | 1.522 | 1.196 | — | |
| k1 | 0.314 | 0.492 | 0.253 | 0.363 | 0.273 | |
| k2 | 0.290 | 0.277 | 0.302 | 0.317 | 0.316 | |
| k3 | 0.289 | 0.136 | 0.303 | 0.290 | 0.323 | |
| k4 | — | 0.100 | 0.336 | 0.288 | 0.311 | |
| k5 | — | — | 0.304 | 0.239 | — | |
| R | 0.025 | 0.392 | 0.083 | 0.124 | 0.050 | |
| 主次顺序 | B>D>C>E>A | |||||
| 最优水平 | A2 | B4 | C1 | D5 | E1 | |
| 评价指标 | 方差来源 | 偏方差和 | 自由度 | 均方和 | 检验统计量F值 | 显著性 | 显著性水平 |
|---|---|---|---|---|---|---|---|
| 颗粒平均停留时间tm/s | A | 237.718 | 2 | 118.859 | 0.961 | 0.423 | 不显著 |
| B | 766.865 | 3 | 255.622 | 2.067 | 0.183 | 不显著 | |
| C | 729.873 | 4 | 182.468 | 1.476 | 0.296 | 不显著 | |
| D | 74 930.399 | 4 | 18732.6 | 151.485 | <0.001 | 非常显著 | |
| E | 10 851.688 | 3 | 3 617.229 | 29.251 | <0.001 | 非常显著 | |
| 误差 | 989.28 | 8 | 123.66 | — | — | — | |
| 无量纲方差σ | A | 0.004 | 2 | 0.002 | 1.23 | 0.342 | 不显著 |
| B | 0.708 | 3 | 0.236 | 158.234 | <0.001 | 非常显著 | |
| C | 0.018 | 4 | 0.004 | 2.947 | 0.09 | 不显著 | |
| D | 0.041 | 4 | 0.01 | 6.932 | 0.01 | 显著 | |
| E | 0.012 | 3 | 0.004 | 2.612 | 0.123 | 不显著 | |
| 误差 | 0.012 | 8 | 0.001 | — | — | — |
表5 正交模拟试验方差分析结果
Tab.5 Variance analysis results of orthogonal simulation test
| 评价指标 | 方差来源 | 偏方差和 | 自由度 | 均方和 | 检验统计量F值 | 显著性 | 显著性水平 |
|---|---|---|---|---|---|---|---|
| 颗粒平均停留时间tm/s | A | 237.718 | 2 | 118.859 | 0.961 | 0.423 | 不显著 |
| B | 766.865 | 3 | 255.622 | 2.067 | 0.183 | 不显著 | |
| C | 729.873 | 4 | 182.468 | 1.476 | 0.296 | 不显著 | |
| D | 74 930.399 | 4 | 18732.6 | 151.485 | <0.001 | 非常显著 | |
| E | 10 851.688 | 3 | 3 617.229 | 29.251 | <0.001 | 非常显著 | |
| 误差 | 989.28 | 8 | 123.66 | — | — | — | |
| 无量纲方差σ | A | 0.004 | 2 | 0.002 | 1.23 | 0.342 | 不显著 |
| B | 0.708 | 3 | 0.236 | 158.234 | <0.001 | 非常显著 | |
| C | 0.018 | 4 | 0.004 | 2.947 | 0.09 | 不显著 | |
| D | 0.041 | 4 | 0.01 | 6.932 | 0.01 | 显著 | |
| E | 0.012 | 3 | 0.004 | 2.612 | 0.123 | 不显著 | |
| 误差 | 0.012 | 8 | 0.001 | — | — | — |
| [1] | 沙伟燕,胡伟,何宁辉,等 .大规模虚拟储能平抑新能源功率预测误差优化调度方法[J].电力科学与技术学报,2023,38(6):167-174. |
| SHA W Y, HU W, HE N H,et al .Optimal scheduling method for stabilizing power prediction error of new energy by large-scale virtual energy storage[J].Journal of Electric Power Science and Technology,2023,38(6):167-174. | |
| [2] | 于唯一,王慧芳,曹芬,等 .考虑场景缩减和动态寿命的用户侧新能源配储研究[J].电测与仪表,2024,61(9):127-136. |
| YU W Y, WANG H F, CAO F,et al .Research on user-side energy storage configuration for renewable energy considering scenario reduction and dynamic lifetime[J].Electrical Measurement & Instrumentation,2024,61(9):127-136. | |
| [3] | 李文,卜凡鹏,张潇桐,等 .基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J].发电技术,2024,45(6):1186-1200. |
| LI W, BU F P, ZHANG X T,et al .Optimal operation method of electric-hydrogen hybrid energy storage microgrid system based on typical commercial operation mode[J].Power Generation Technology,2024,45(6):1186-1200. | |
| [4] | 姜智霖,郝峰杰,袁志昌,等 .考虑SOC优化设定的电-氢混合储能系统的运行优化[J].电力系统保护与控制,2024,52(8):65-76. |
| JIANG Z L, HAO F J, YUAN Z C,et al .Optimal operation of an electro-hydrogen hybrid energy storage system considering SOC optimization setting[J].Power System Protection and Control,2024,52(8):65-76. | |
| [5] | 黄兴华,吴涵,陈石川,等 .考虑新能源出力的孤岛微网储能配置优化方法[J].中国电力,2024,57(12):132-138. |
| HUANG X H, WU H, CHEN S C,et al .An optimization method for energy storage configuration of isolated island microgrid considering new energy output[J].Electric Power,2024,57(12):132-138. | |
| [6] | 凌祥,宋丹阳,陈晓轶,等 .钙基热化学储能体系装备与系统研究进展[J].化工进展,2021,40(4):1777-1796. |
| LING X, SONG D Y, CHEN X Y,et al .Progress in equipment and systems for calcium-based thermochemical energy storage system[J].Chemical Industry and Engineering Progress,2021,40(4):1777-1796. | |
| [7] | 顾正萌,蒋世希,吴家荣,等 .CaO/Ca(OH)2体系热化学储能应用关键问题的讨论[J].电力科技与环保,2023,39(4):285-291. doi:10.1023/a:1023840102689 |
| GU Z M, JIANG S X, WU J R,et al .A discussion of key issues for the application of CaO/Ca(OH)2 system thermochemical energy storage[J].Electric Power Technology and Environmental Protection,2023,39(4):285-291. doi:10.1023/a:1023840102689 | |
| [8] | 高巍,张聚伟,汪印,等 .连续进出料鼓泡流化床颗粒停留时间分布[J].过程工程学报,2012,12(1):9-13. |
| GAO W, ZHANG J W, WANG Y,et al .Residence time distribution of particles in a bubbling fluidized bed with their continuous input and output[J].The Chinese Journal of Process Engineering,2012,12(1):9-13. | |
| [9] | BACHMANN P, TSOTSAS E .Analysis of residence time distribution data in horizontal fluidized beds[J].Procedia Engineering,2015,102:790-798. doi:10.1016/j.proeng.2015.01.190 |
| [10] | BACHMANN P, BÜCK A, TSOTSAS E .Investigation of the residence time behavior of particulate products and correlation for the bodenstein number in horizontal fluidized beds[J].Powder Technology,2016,301:1067-1076. doi:10.1016/j.powtec.2016.07.045 |
| [11] | ZOU Z, ZHAO Y L, ZHAO H F,et al .CFD simulation of solids residence time distribution in a multi-compartment fluidized bed[J].Chinese Journal of Chemical Engineering,2017,25(12):1706-1713. doi:10.1016/j.cjche.2017.02.010 |
| [12] | KONG W B, WANG B, BAEYENS J,et al .Solids mixing in a shallow cross-flow bubbling fluidized bed[J].Chemical Engineering Science,2018,187:213-222. doi:10.1016/j.ces.2018.04.073 |
| [13] | HUA L N, ZHAO H, LI J,et al .Solid residence time distribution in a cross-flow dense fluidized bed with baffles[J].Chemical Engineering Science,2019,200:320-335. doi:10.1016/j.ces.2019.01.054 |
| [14] | 兰斌,徐骥,刘志成,等 .连续操作密相流化床颗粒停留时间分布特性模拟放大研究[J].化工学报,2021,72(1):521-533. |
| LAN B, XU J, LIU Z C,et al .Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds[J].CIESC Journal,2021,72(1):521-533. | |
| [15] | LAN B, XU J, ZHAO P J,et al .Scale-up effect of residence time distribution of polydisperse particles in continuously operated multiple-chamber fluidized beds[J].Chemical Engineering Science,2021,244(3):116809. doi:10.1016/j.ces.2021.116809 |
| [16] | 都艺伟,吴新,刘道洁 等 .内置螺旋挡板流化床颗粒停留时间分布[J].过程工程学报,2018,18(3):484-490. |
| DU Y W,WU X,LIU D J,et al,Residence time distribution of particles in fluidized bed with spiral internal[J].The Chinese Journal of Process Engineering,2018,18(3):484-490. | |
| [17] | GENG S J, QIAN Y A, ZHAN J H,et al .Prediction of solids residence time distribution in cross-flow bubbling fluidized bed[J].Powder Technology,2017,320:555-564. doi:10.1016/j.powtec.2017.07.085 |
| [18] | GIDASPOW D .Multiphase flow and fluidization:continuum and kinetic theory descriptions[M].Boston:Academic Press,1994:35-37. doi:10.1016/b978-0-08-051226-6.50013-3 |
| [1] | 王洪健, 黄延凯, 喻鑫, 于敦喜. 纯燃高碱煤循环流化床锅炉宽负荷低NO x 燃烧改造试验研究[J]. 发电技术, 2025, 46(5): 1005-1013. |
| [2] | 李建军, 尚曼霞, 董海龙, 李冰铭, 黄中. 350 MW超临界循环流化床锅炉联合脱硝技术应用与优化研究[J]. 发电技术, 2025, 46(5): 1014-1021. |
| [3] | 徐义巍, 洪岩, 赵晓鹏, 隋炳伟. 煤氨混燃对燃煤锅炉受热面传热特性影响分析[J]. 发电技术, 2025, 46(5): 1022-1031. |
| [4] | 张帅柠, 高明明, 王勇权, 王唯铧, 于浩洋, 黄中. 循环流化床锅炉宽负荷一体化脱硫建模研究[J]. 发电技术, 2025, 46(4): 849-856. |
| [5] | 张鹏新, 高明明, 解沛然, 于浩洋, 张洪福, 黄中. 基于数据驱动的循环流化床机组深度调峰NO x 预测[J]. 发电技术, 2025, 46(3): 627-636. |
| [6] | 罗勇军, 李建波, 朱红燕. 生物质合成灰的烧结熔融特性和矿物转变规律实验研究[J]. 发电技术, 2024, 45(4): 600-610. |
| [7] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
| [8] | 屠楠, 刘家琛, 徐静, 方嘉宾, 马彦花. 管壳式相变蓄热器的蓄释热过程性能分析[J]. 发电技术, 2024, 45(3): 508-516. |
| [9] | 高忠明, 朱德敖, 陈雨佳, 刘三举, 王勤辉. 农林废弃物循环流化床空气气化特性实验研究[J]. 发电技术, 2024, 45(3): 535-544. |
| [10] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
| [11] | 邓启刚, 吕卓, 石友, 鲁佳易, 周旭, 王奥宇, 杨冬. 不带外置床的700 MW超超临界循环流化床锅炉失电后水冷壁安全计算分析[J]. 发电技术, 2024, 45(2): 240-249. |
| [12] | 郭滔, 于海洋, 冯海波, 袁汉川, 田兵, 杨玉杰, 赵元宾, 赵倩. 气侧均流装置对冷却三角单元流动传热特性影响的实验研究[J]. 发电技术, 2024, 45(1): 79-89. |
| [13] | 董中豪, 卢啸风, 史丽超, 杨增增, 孔繁盛, 王鹏, 林国强, 赵鹏. 炉膛耐火材料热惯性对循环流化床锅炉调峰速率的影响[J]. 发电技术, 2023, 44(4): 514-524. |
| [14] | 王洪健, 王海洋, 孔皓, 周托, 张缦, 杨海瑞. 135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J]. 发电技术, 2022, 43(6): 918-926. |
| [15] | 李振山, 陈虎, 李维成, 刘磊, 蔡宁生. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||