发电技术 ›› 2025, Vol. 46 ›› Issue (5): 1032-1040.DOI: 10.12096/j.2096-4528.pgt.24046

• 发电及环境保护 • 上一篇    

基于正交试验的流化床颗粒停留时间分布特性数值分析

屠楠1, 王驰宇1, 刘晓群1, 方嘉宾2   

  1. 1.西安工程大学机电工程学院,陕西省 西安市 710600
    2.西安交通大学化学工程与技术学院,陕西省 西安市 712000
  • 收稿日期:2024-03-23 修回日期:2024-04-28 出版日期:2025-10-31 发布日期:2025-10-23
  • 作者简介:屠楠(1987),女,博士,副教授,主要从事太阳能热发电技术研究,tu.nan@qq.com
    王驰宇(1999),男,硕士研究生,主要从事太阳能热化学储能技术研究,1527159383@qq.com
    刘晓群(1999),女,硕士研究生,主要从事太阳能热化学储能技术研究,1958214014@qq.com
    方嘉宾(1983),男,博士,副教授,主要从事太阳能热发电及热化学储能技术研究,本文通信作者,jiabinfang@xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22378321);陕西省重点研究计划项目(2022GXLH-01-08);陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-179);中国电力建设股份有限公司研究中心定向资助计划(DJ-PTZX-2021-03)

Numerical Analysis of Particle Residence Time Distribution Characteristics in Fluidized Bed Based on Orthogonal Test

Nan TU1, Chiyu WANG1, Xiaoqun LIU1, Jiabin FANG2   

  1. 1.School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710600, Shaanxi Province, China
    2.School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 712000, Shaanxi Province, China
  • Received:2024-03-23 Revised:2024-04-28 Published:2025-10-31 Online:2025-10-23
  • Supported by:
    National Natural Science Foundation of China(22378321);Key Research Project of Shaanxi Province(2022GXLH-01-08);Qin Chuangyuan “Scientist & Engineer” Team Construction Project of Shaanxi Province(2022KXJ-179);Directed Funding Program of Research Center of China Power Construction Company Limited(DJ-PTZX-2021-03)

摘要:

目的 颗粒停留时间分布(residence time distribution,RTD)是评估流化床内气固混合程度的重要指标,但其影响因素较多,调控难度较大。为合理设计并优化连续进出料鼓泡流化床,需探究结构及操作参数对颗粒RTD的影响规律。 方法 基于欧拉双流体模型耦合组分输运方程,建立了三维矩形流化床颗粒RTD数值计算模型,设计了25组正交模拟试验,探究了挡板结构、数量、流通宽度及颗粒进口质量流量、表观气速对颗粒RTD的影响。 结果 颗粒进口质量流量是影响颗粒平均停留时间的最显著因素,其次为表观气速,且二者皆与颗粒平均停留时间呈负相关。挡板数量和质量流量是影响RTD无量纲方差的主要和次要因素,且二者的增加都会降低无量纲方差,减弱流化床返混程度,使流动趋向于平推流。 结论 通过调节颗粒质量流量可有效调控颗粒平均停留时间,挡板数量是设计流化床的关键结构参数。研究结果可为流化床设计及优化提供理论指导。

关键词: 流化床, 传热, 停留时间分布, 正交试验, 优化设计

Abstract:

Objectives The residence time distribution (RTD) of particles is an important index to evaluate gas-solid mixing degree in fluidized bed, but there are many influencing factors and it is difficult to control. In order to design and optimize the fluidized bed with continuous operation, it is necessary to explore the influence of structure and operation parameters on RTD of particles. Methods Based on the Eulerian-Eulerian two-fluid model coupled with the component transport equation, a three-dimensional numerical calculation model of the particle RTD in a rectangular fluidized bed with continuous operation is established. The orthogonal simulation tests with 25 sets are designed to investigate the effects of the baffle structure, number, flow width, particle inlet mass flow rate, and superficial gas velocity on the particle RTD. Results The inlet mass flow rate of particles has the most significant effect on the average residence time of particles, followed by the superficial gas velocity, and both of them are inversely proportional to the average residence time of particles. However, for the dimensionless variance of RTD, the number of baffles and the mass flow rate are important influencing factors. The increase of them will reduce the dimensionless variance, weaken the backmixing degree of the fluidized bed, and make the flow tend to plug flow, but the number of baffles has a greater impact. Conclusions The average residence time of particles can be effectively controlled by adjusting the mass flow rate of particles. The number of baffles is a key structural parameter for designing fluidized beds.The research results can provide theoretical guidance for the design and optimization of fluidized bed.

Key words: fluidized bed, heat transfer, residence time distribution, orthogonal test, optimal design

中图分类号: