发电技术 ›› 2025, Vol. 46 ›› Issue (5): 1022-1031.DOI: 10.12096/j.2096-4528.pgt.23160
• 发电及环境保护 • 上一篇
徐义巍, 洪岩, 赵晓鹏, 隋炳伟
收稿日期:2024-03-22
修回日期:2024-06-27
出版日期:2025-10-31
发布日期:2025-10-23
作者简介:基金资助:Yiwei XU, Yan HONG, Xiaopeng ZHAO, Bingwei SUI
Received:2024-03-22
Revised:2024-06-27
Published:2025-10-31
Online:2025-10-23
Supported by:摘要:
目的 掺氨燃烧是降低燃煤锅炉碳排放的有效方式,但目前从全炉膛尺度对掺氨燃烧进行分析的研究较少。为此,系统分析了不同负荷下全炉膛尺度的传热特性。 方法 结合数值模拟和锅炉热力计算方法,探究了50%~100%不同负荷下掺氨燃烧对某600 MW亚临界燃煤锅炉炉膛及对流受热面传热的影响,分析了工质温度、烟气温度及锅炉效率等随掺氨比例(0~40%热值比)的变化特性。 结果 炉膛出口烟温随掺氨比例增加呈下降趋势;通过对锅炉减温水量进行调整,掺烧0~40%氨后各受热面工质出口温度可保持稳定;同时,空预器出口处热一、二次风温随掺氨比例增加而小幅降低;与纯煤燃烧相比,20%~40%掺氨比例下锅炉排烟温度增加7.8~8.1℃,由此导致锅炉效率下降0.9%~1.1%。 结论 通过合理调节,可保证在50%掺氨比例以下维持锅炉的稳定运行。研究结果为煤氨混燃技术的应用提供了理论依据和实践指导。
中图分类号:
徐义巍, 洪岩, 赵晓鹏, 隋炳伟. 煤氨混燃对燃煤锅炉受热面传热特性影响分析[J]. 发电技术, 2025, 46(5): 1022-1031.
Yiwei XU, Yan HONG, Xiaopeng ZHAO, Bingwei SUI. Analysis of Influence of Coal-Ammonia Co-firing on the Heat Transfer Characteristics of Heating Surfaces in Coal-Fired Boiler[J]. Power Generation Technology, 2025, 46(5): 1022-1031.
| 参数 | 工业分析 | 元素分析 | 发热量/(MJ/kg) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mar | FCar | Var | Aar | Car | Har | Oar | Nar | Sar | ||
| 数值 | 14.50 | 48.32 | 29.48 | 7.70 | 62.58 | 3.70 | 10.05 | 1.07 | 0.40 | 24.00 |
表1 锅炉设计煤种数据分析
Tab. 1 Analysis of design coal data for boiler
| 参数 | 工业分析 | 元素分析 | 发热量/(MJ/kg) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mar | FCar | Var | Aar | Car | Har | Oar | Nar | Sar | ||
| 数值 | 14.50 | 48.32 | 29.48 | 7.70 | 62.58 | 3.70 | 10.05 | 1.07 | 0.40 | 24.00 |
| 锅炉负荷 | 掺氨比例/% | 给煤量/(kg/s) | 给氨量/(kg/s) | 总空气量/(kg/s) |
|---|---|---|---|---|
| 100%负荷 | 0 | 58.24 | 0 | 559.83 |
| 20 | 46.59 | 15.03 | 557.98 | |
| 40 | 34.95 | 30.16 | 555.87 | |
| 75%负荷 | 0 | 44.26 | 0 | 425.42 |
| 20 | 35.41 | 11.42 | 424.01 | |
| 40 | 26.56 | 22.84 | 422.41 | |
| 50%负荷 | 0 | 30.34 | 0 | 291.60 |
| 20 | 24.27 | 7.83 | 290.63 | |
| 40 | 18.20 | 15.66 | 289.54 |
表2 不同负荷下锅炉的给煤量、给氨量和空气量
Tab. 2 Coal, ammonia, and air feed rates for the boiler under different loads
| 锅炉负荷 | 掺氨比例/% | 给煤量/(kg/s) | 给氨量/(kg/s) | 总空气量/(kg/s) |
|---|---|---|---|---|
| 100%负荷 | 0 | 58.24 | 0 | 559.83 |
| 20 | 46.59 | 15.03 | 557.98 | |
| 40 | 34.95 | 30.16 | 555.87 | |
| 75%负荷 | 0 | 44.26 | 0 | 425.42 |
| 20 | 35.41 | 11.42 | 424.01 | |
| 40 | 26.56 | 22.84 | 422.41 | |
| 50%负荷 | 0 | 30.34 | 0 | 291.60 |
| 20 | 24.27 | 7.83 | 290.63 | |
| 40 | 18.20 | 15.66 | 289.54 |
| 参数 | 100%负荷 | 50%负荷 | ||
|---|---|---|---|---|
| 设计值 | 计算值 | 设计值 | 计算值 | |
| 屏式过热器出口烟温/℃ | 1 126.0 | 1 126.0 | 1 008.0 | 1 009.8 |
| 高温再热器出口烟温/℃ | 768.0 | 768.0 | 685.0 | 685.9 |
| 空预器进口烟温/℃ | 355.0 | 355.0 | 297.0 | 297.0 |
| 排烟温度/℃ | 119.0 | 119.0 | 99.0 | 99.2 |
| 高温过热器进口蒸汽温度/℃ | 510.0 | 510.0 | 520.0 | 519.7 |
| 高温过热器出口蒸汽温度/℃ | 541.0 | 541.0 | 541.0 | 540.9 |
| 壁式再热器进口蒸汽温度/℃ | 310.0 | 310.0 | 301.0 | 301.0 |
| 高温再热器出口蒸汽温度/℃ | 541.0 | 541.0 | 539.0 | 539.0 |
表3 100%与50%负荷下锅炉主要参数设计值与计算值对比
Tab. 3 Comparison of design and calculated values for boiler main parameters under 100% and 50% load
| 参数 | 100%负荷 | 50%负荷 | ||
|---|---|---|---|---|
| 设计值 | 计算值 | 设计值 | 计算值 | |
| 屏式过热器出口烟温/℃ | 1 126.0 | 1 126.0 | 1 008.0 | 1 009.8 |
| 高温再热器出口烟温/℃ | 768.0 | 768.0 | 685.0 | 685.9 |
| 空预器进口烟温/℃ | 355.0 | 355.0 | 297.0 | 297.0 |
| 排烟温度/℃ | 119.0 | 119.0 | 99.0 | 99.2 |
| 高温过热器进口蒸汽温度/℃ | 510.0 | 510.0 | 520.0 | 519.7 |
| 高温过热器出口蒸汽温度/℃ | 541.0 | 541.0 | 541.0 | 540.9 |
| 壁式再热器进口蒸汽温度/℃ | 310.0 | 310.0 | 301.0 | 301.0 |
| 高温再热器出口蒸汽温度/℃ | 541.0 | 541.0 | 539.0 | 539.0 |
| 参数 | 掺氨比例 | ||
|---|---|---|---|
| 0% | 20% | 40% | |
| 100%负荷下火焰中心相对高度/% | 11.83 | 10.78 | 9.57 |
| 75%负荷下火焰中心相对高度/% | 5.87 | 4.95 | 4.02 |
| 50%负荷下火焰中心相对高度/% | 3.82 | 2.81 | 2.17 |
表4 不同负荷下掺氨比例对火焰中心相对高度的影响
Tab. 4 Effect of ammonia ratio on relative height of flame center under different loads
| 参数 | 掺氨比例 | ||
|---|---|---|---|
| 0% | 20% | 40% | |
| 100%负荷下火焰中心相对高度/% | 11.83 | 10.78 | 9.57 |
| 75%负荷下火焰中心相对高度/% | 5.87 | 4.95 | 4.02 |
| 50%负荷下火焰中心相对高度/% | 3.82 | 2.81 | 2.17 |
| 参数 | 掺氨比例 | ||
|---|---|---|---|
| 0% | 20% | 40% | |
| 炉膛出口烟温/℃ | 1 368.6 | 1 355.8 | 1 344.2 |
| 炉膛出口烟气流量/(×103 m3/h) | 1 415.8 | 1 482.7 | 1 549.7 |
| N2体积分数/% | 73.6 | 72.7 | 71.8 |
| O2体积分数/% | 3.1 | 3.0 | 2.9 |
| CO2体积分数/% | 14.6 | 11.3 | 8.2 |
| H2O体积分数/% | 8.7 | 13.0 | 17.1 |
| SO2体积分数/% | 0.04 | 0.03 | 0.02 |
| 飞灰质量浓度/(g/m3) | 9.2 | 7.1 | 5.1 |
| 焦炭粒子质量浓度/(g/m3) | 3.9 | 2.7 | 1.8 |
表5 100%负荷下炉膛出口烟气主要参数计算结果对比
Tab. 5 Comparison of calculated values for main flue gas parameters under 100% load
| 参数 | 掺氨比例 | ||
|---|---|---|---|
| 0% | 20% | 40% | |
| 炉膛出口烟温/℃ | 1 368.6 | 1 355.8 | 1 344.2 |
| 炉膛出口烟气流量/(×103 m3/h) | 1 415.8 | 1 482.7 | 1 549.7 |
| N2体积分数/% | 73.6 | 72.7 | 71.8 |
| O2体积分数/% | 3.1 | 3.0 | 2.9 |
| CO2体积分数/% | 14.6 | 11.3 | 8.2 |
| H2O体积分数/% | 8.7 | 13.0 | 17.1 |
| SO2体积分数/% | 0.04 | 0.03 | 0.02 |
| 飞灰质量浓度/(g/m3) | 9.2 | 7.1 | 5.1 |
| 焦炭粒子质量浓度/(g/m3) | 3.9 | 2.7 | 1.8 |
| 参数 | 掺氨比例 | ||
|---|---|---|---|
| 0% | 20% | 40% | |
| 空预器进口烟焓/(kJ/kg) | 4 039.65 | 3 922.17 | 3 817.95 |
| 空预器出口烟焓/(kJ/kg) | 1 396.32 | 1 407.15 | 1 410.34 |
| 空预器烟气焓降/(kJ/kg) | 2 643.33 | 2 515.02 | 2 407.61 |
表6 100%负荷下掺氨比例对空预器烟焓的影响
Tab. 6 Effect of ammonia ratio on flue gas enthalpy of air preheater under 100% load
| 参数 | 掺氨比例 | ||
|---|---|---|---|
| 0% | 20% | 40% | |
| 空预器进口烟焓/(kJ/kg) | 4 039.65 | 3 922.17 | 3 817.95 |
| 空预器出口烟焓/(kJ/kg) | 1 396.32 | 1 407.15 | 1 410.34 |
| 空预器烟气焓降/(kJ/kg) | 2 643.33 | 2 515.02 | 2 407.61 |
| [1] | 郑国光 .支撑“双碳”目标实现的问题辨识与关键举措研究[J].中国电力,2023,56(11):1-8. |
| ZHENG G G .Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J].Electric Power,2023,56(11):1-8. | |
| [2] | 巫俊楫,张惠娟,宗涛,等 .浅析我国实现“双碳”目标的挑战与路径举措[J].低碳世界,2023,13(11):31-33. |
| WU J J, ZHANG H J, ZONG T,et al .Analysis on the challenges and measures to achieve the “double carbon” goal in China[J].Low Carbon World,2023,13(11):31-33. | |
| [3] | 赵欣 .“双碳”背景下国外能源生产消费现状对我国能源安全保障的启示[J].中国煤炭地质,2022,34(11):35-40. |
| ZHAO X .Enlightenment of foreign energy production and consumption status quo on China’s energy security under the background of “carbon peaking and carbon neutrality”[J].Coal Geology of China,2022,34(11):35-40. | |
| [4] | 张永生,董舵,肖逸,等 .我国能源生产、消费、储能现状及碳中和条件下变化趋势[J].科学通报,2021,66(34):4466-4476. doi:10.1360/tb-2021-0797 |
| ZHANG Y S, DONG D, XIAO Y,et al .Current status and trends in energy production,consumption,and storage under carbon neutrality conditions in China[J].Chinese Science Bulletin,2021,66(34):4466-4476. doi:10.1360/tb-2021-0797 | |
| [5] | 袁鑫,刘骏,陈衡,等 .“双碳”背景下火电行业CCUS技术路线分析[J].能源科技,2023(4):46-50. |
| YUAN X, LIU J, CHEN H,et al .Analysis of CCUS Technology Route in the Thermal Power Industry under the background of “carbon peak and carbon neutrality”[J].Energy Science and Technology,2023(4):46-50. | |
| [6] | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
| XU H H, SHAO G P, E C L,et al .Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
| [7] | 农发行农村金融发展研究院课题组,程覃思 .系统观下的能源清洁低碳转型与农发行支持路径[J].农业发展与金融,2022(4):13-21. |
| Research Group of Rural Financial Development Institute of Agricultural Development Bank, CHENG Q S .Energy clean and low-carbon transformation and agricultural development bank support path from the system view[J].Agricultural Development and Finance,2022(4):13-21. | |
| [8] | 赵春生,杨君君,王婧,等 .燃煤发电行业低碳发展路径研究[J].发电技术,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 |
| ZHAO C S, YANG J J, WANG J,et al .Research on low-carbon development path of coal-fired power industry[J].Power Generation Technology,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 | |
| [9] | 张蕾,邢大勇,芦玉铎,等 .新型吸收剂捕集燃气电厂烟气中二氧化碳的中试研究[J].分布式能源,2023,8(4):55-62. |
| ZHANG L, XING D Y, LU Y D,et al .Pilot study on a new absorbent captures carbon dioxide in flue gas of gas-fired power plant[J].Distributed Energy,2023,8(4):55-62. | |
| [10] | 刘志强,李建锋,潘荔,等 .中国煤电机组改造升级效果分析与展望[J].中国电力,2024,57(7):1-11.. |
| LIU Z Q, LI J F, PAN L,et al .Analysis and prospect of transformation and upgrading effects of coal-fired power units in China[J].Electric Power,2024,57(7):1-11. | |
| [11] | 史鹏飞,康朝斌,张志强,等 .某330 MW亚临界直接空冷燃煤机组汽轮机综合节能改造效果分析[J].电力科技与环保,2023,39(1):8-15. |
| SHI P F, KANG C B, ZHANG Z Q,et al .Comprehensive energy saving retrofit technology and application of a 330 MW subcritical direct air-cooled coal-fired unit[J].Electric Power Technology and Environmental Protection,2023,39(1):8-15. | |
| [12] | 朱磊,刘成勇,古文哲,等 .双碳目标下“煤基固废-CO2”协同充填封存技术构想[J].矿业安全与环保,2023,50(6):16-21. |
| ZHU L, LIU C Y, GU W Z,et al .Conception of“coal-based solid waste-CO2” cooperative filling and storage technology under the target of carbon peak and carbon neutral[J].Mining Safety & Environmental Protection,2023,50(6):16-21. | |
| [13] | ZHANG H, JIANG X, LIU J,et al .Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J].Energy Conversion and Management,2014,83:167-176. doi:10.1016/j.enconman.2014.03.067 |
| [14] | 高虎,刘凡,李海 .碳中和目标下氨燃料的机遇、挑战及应用前景[J].发电技术,2022,43(3):462-467. doi:10.12096/j.2096-4528.pgt.22059 |
| GAO H, LIU F, LI H .Opportunities,challenges and application prospects of ammonia fuel under the target of carbon neutrality[J].Power Generation Technology,2022,43(3):462-467. doi:10.12096/j.2096-4528.pgt.22059 | |
| [15] | 罗志斌,孙潇,高啸天,等 .双碳背景下绿色氨能的应用场景及展望[J].南方能源建设,2023,10(3):47-54. |
| LUO Z B, SUN X, GAO X T,et al .Development prospects and application scenarios of green ammonia energy industry under the background of carbon peak and neutrality[J].Southern Energy Construction,2023,10(3):47-54. | |
| [16] | 汪鑫,陈钧,范卫东 .燃煤电站锅炉掺氨燃烧与排放特性综述[J].洁净煤技术,2022,28(8):25-34. |
| WANG X, CHEN J, FAN W D .Review on combustion and emission characteristics of coal-fired utility boilers ammonia/coal co-firing[J].Clean Coal Technology,2022,28(8):25-34. | |
| [17] | 底一,黄骞,马鹏,等 .生物质掺氨燃烧特性试验研究[J].中国电机工程学报,2022,42(18):6547-6552. |
| DI Y, HUANG Q, MA P,et al .Experimental investigation on combustion characteristics of cofiring biomass with ammonia[J].Proceedings of the CSEE,2022,42(18):6547-6552. | |
| [18] | 龚艳艳 .煤氨混燃方式与掺氨比对燃料排放特性的影响研究[J].煤质技术,2023,38(4):46-52. |
| GONG Y Y .Study on the influence of coal ammonia mixed combustion method and ammonia mixing ratio on fuel emission characteristics[J].Coal Quality Technology,2023,38(4):46-52. | |
| [19] | 王志超,方亮,贾子秀,等 .不同比例氨与煤混燃试验研究[J].热力发电,2023,52(7):41-47. |
| WANG Z C, FANG L, JIA Z X,et al .Experimental study on co-combustion of different ratios of ammonia with coal[J].Thermal Power Generation,2023,52(7):41-47. | |
| [20] | 王华坤,徐义书,张保华,等 .煤掺氨燃烧过程中NO生成特性和氨氮转化行为研究[J].能源环境保护,2023,37(4):30-37. |
| WANG H K, XU Y S, ZHANG B H,et al .Study on NO formation characteristics and ammonia-nitrogen conversion behavior during ammonia-coal co-firing[J].Energy Environmental Protection,2023,37(4):30-37. | |
| [21] | 赖诗妮,江丽霞,李军,等 .含碳掺氨燃料的研究进展[J].化工进展,2023,42(9):4603-4615. |
| LAI S N, JIANG L X, LI J,et al .Research progress of ammonia blended fossil fuel[J].Chemical Industry and Engineering Progress,2023,42(9):4603-4615. | |
| [22] | 徐静颖,朱鸿玮,徐义书,等 .燃煤电站锅炉氨燃烧研究进展及展望[J].华中科技大学学报(自然科学版),2022,50(7):55-65. doi:10.13245/j.hust.220705 |
| XU J Y, ZHU H W, XU Y S,et al .Research progress and prospect of ammonia cofiring in utility coal-fired boiler[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2022,50(7):55-65. doi:10.13245/j.hust.220705 | |
| [23] | CHEN C, WANG Z, ZHU R,et al .Co-firing characteristics and fuel-N transformation of ammonia/pulverized coal binary fuel[J].Fuel,2023,337:126857. doi:10.1016/j.fuel.2022.126857 |
| [24] | ZHANG H, LIU J, WANG X,et al .Density functional theory study on two different oxygen enhancement mechanisms during NO-char interaction[J].Combustion and Flame,2016,169:11-18. doi:10.1016/j.combustflame.2016.03.023 |
| [25] | 刘鹏,朱江涛,沈平虹,等 .高温还原性气氛条件下喷氨脱硝机理优化[J].燃烧科学与技术,2018,24(6):487-492. |
| LIU P, ZHU J T, SHEN P H,et al .Optimization of mechanisms for ammonia-injected de-NO x reactions in a high-temperature and reducing atmosphere[J].Journal of Combustion Science and Technology,2018,24(6):487-492. | |
| [26] | 陈萍,花昌豪,王佩佩,等 .氨煤混燃NO生成机理研究[J].煤炭转化,2023,46(4):51-58. |
| CHEN P, HUA C H, WANG P P,et al .Study on NO formation mechanism of ammonia-coal co-combustion[J].Coal Conversion,2023,46(4):51-58. | |
| [27] | 朱京冀,徐义书,徐静颖,等 .掺烧氨燃料对煤挥发分火焰特性及颗粒物生成的影响[J].发电技术,2022,43(6):908-917. |
| ZHU J J, XU Y S, XU J Y,et al .Effect of co-firing ammonia on coal volatile flame characteristics and particulate matter formation behaviours[J].Power Generation Technology,2022,43(6):908-917. | |
| [28] | 马仑,方庆艳,张成,等 .深度空气分级下煤粉耦合氨燃烧及NO生成特性[J].洁净煤技术,2022,28(3):201-213. |
| MA L, FANG Q Y, ZHANG C,et al .Combustion and NO formation characteristics of pulverized coal co-firing with ammonia in a deep-air staging condition[J].Clean Coal Technology,2022,28(3):201-213. | |
| [29] | JIN W, SI F, CAO Y,et al .Numerical research on ammonia-coal co-firing in a 1050 MW coal-fired utility boiler under ultra-low load:effects of ammonia ratio and air staging condition[J].Applied Thermal Engineering,2023,233:121100. doi:10.1016/j.applthermaleng.2023.121100 |
| [30] | LYU Q, WANG R, DU Y,et al .Numerical study on coal/ammonia co-firing in a 600 MW utility boiler[J].International Journal of Hydrogen Energy,2023,48(45):17293-17310. doi:10.1016/j.ijhydene.2023.01.232 |
| [31] | ZHANG J, ITO T, ISHII H,et al .Numerical investigation on ammonia co-firing in a pulverized coal combustion facility:effect of ammonia co-firing ratio[J].Fuel,2020,267:117166. doi:10.1016/j.fuel.2020.117166 |
| [32] | XU Y, WANG H, LIU X,et al .Mitigating CO2 emission in pulverized coal-fired power plant via co-firing ammonia:a simulation study of flue gas streams and exergy efficiency[J].Energy Conversion and Management,2022,256:115328. doi:10.1016/j.enconman.2022.115328 |
| [33] | WANG S, SHENG C .Evaluating the effect of ammonia co-firing on the performance of a pulverized coal-fired utility boiler[J].Energies,2023,16(6):2773. doi:10.3390/en16062773 |
| [34] | CHEN L, WANG C, WANG W .Effect of ammonia co-firing on heat transfer,safety,and economy of coal-fired boilers[J].Fuel,2023,334:126649. doi:10.1016/j.fuel.2022.126649 |
| [35] | 王彬滨,余江,张荣,等 .典型风电场地形大气稳定度对风机出力的影响.南方能源建设,2024,11(1):105-111. |
| WANG B B, YU J, ZHANG R,et al .Influence of atmospheric stability on wind power output under typical wind field topography[J].Southern Energy Construction,2024,11(1):105-111. | |
| [36] | 周强泰 .锅炉原理[M].3版.北京:中国电力出版社,2013:157-159. |
| ZHOU Q T .Boiler principle[M].3rd ed.Beijing:China Electric Power Press,2013:157-159. | |
| [37] | TAMURA M, GOTOU T, ISHII H,et al .Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace[J].Applied Energy,2020,277:115580. doi:10.1016/j.apenergy.2020.115580 |
| [1] | 郭前鑫, 李建波, 王虎, 梁银堂, 韩新建, 阮雄伟, 卢啸风. 准东煤灰的动态沉积与脱落特性数值模拟研究[J]. 发电技术, 2025, 46(4): 829-838. |
| [2] | 王文静, 韩依璇, 李继宾, 沈晓旭, 霍兆义, 冯亮花. 燃气-蒸汽联合循环发电系统多目标优化分析[J]. 发电技术, 2025, 46(4): 839-848. |
| [3] | 张帅柠, 高明明, 王勇权, 王唯铧, 于浩洋, 黄中. 循环流化床锅炉宽负荷一体化脱硫建模研究[J]. 发电技术, 2025, 46(4): 849-856. |
| [4] | 汪义财, 喻鑫, 于敦喜. 能源植物芦竹燃烧利用研究进展[J]. 发电技术, 2025, 46(3): 570-578. |
| [5] | 张立栋, 杨智翔, 李文锋, 冯江哲, 张博, 任淮辉, 陈哲, 王兆新. 导流板对水平轴风力机气动特性影响的数值模拟研究[J]. 发电技术, 2025, 46(2): 336-343. |
| [6] | 张立峰, 董祥虎. 基于鲁棒正则化极限学习机的声学层析温度分布重建[J]. 发电技术, 2025, 46(2): 361-369. |
| [7] | 李凯, 章平衡, 孟志浩, 曹允宁, 徐尧, 刘莉, 李廉明. SCR外置烟道飞灰沉积特性与流场优化数值仿真[J]. 发电技术, 2025, 46(1): 145-153. |
| [8] | 赵海宝, 何毓忠, 刘含笑, 梁江. 燃煤电厂电除尘脉冲电源改进及工程应用[J]. 发电技术, 2025, 46(1): 154-160. |
| [9] | 王凯卉, 刘斌, 折晓会, 刘伟, 范昊, 康宗耀, 徐礼. 氨氢混合燃烧在旋流燃烧器中的动力学特性与NO x 减排机理研究[J]. 发电技术, 2025, 46(1): 171-179. |
| [10] | 曾宪民, 李柏云, 沈向阳, 陈嘉澍, 丁力行. 半周受热下太阳能吸热器横纹管的热应力分析[J]. 发电技术, 2025, 46(1): 190-199. |
| [11] | 刘卓, 陈冬林, 汪淑奇, 杨仪江, 闫优洋, 杨展. 减缓脱硫塔除雾器堵塞的流场优化方法[J]. 发电技术, 2024, 45(6): 1087-1094. |
| [12] | 王轶男, 吕佳阳, 陈衡, 张国强, 徐钢, 翟融融. 基于Aspen Plus的气流床煤气化炉建模及其变工况特性研究[J]. 发电技术, 2024, 45(5): 951-958. |
| [13] | 季恩昌, 杨冬, 孙佰仲. 高水分褐煤流动性实验研究[J]. 发电技术, 2024, 45(4): 633-640. |
| [14] | 丁湧. 1 000 MW超超临界燃煤锅炉深度调峰研究[J]. 发电技术, 2024, 45(3): 382-391. |
| [15] | 屠楠, 刘家琛, 徐静, 方嘉宾, 马彦花. 管壳式相变蓄热器的蓄释热过程性能分析[J]. 发电技术, 2024, 45(3): 508-516. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||