发电技术 ›› 2025, Vol. 46 ›› Issue (2): 284-295.DOI: 10.12096/j.2096-4528.pgt.24096
• 基于群体智能的综合能源系统建模仿真及优化运行 • 上一篇
王奎1,2, 余梦1,2, 张海静3,4, 李妍1,2, 刘哲1,2, 郭军红5
收稿日期:
2024-05-31
修回日期:
2024-07-15
出版日期:
2025-04-30
发布日期:
2025-04-23
作者简介:
基金资助:
Kui WANG1,2, Meng YU1,2, Haijing ZHANG3,4, Yan LI1,2, Zhe LIU1,2, Junhong GUO5
Received:
2024-05-31
Revised:
2024-07-15
Published:
2025-04-30
Online:
2025-04-23
Supported by:
摘要:
目的 鉴于传统配电网需求响应模型在调控负荷侧灵活可控资源方面存在局限性,特别是忽视了冰蓄冷空调这类独特且高效的资源,因此,致力于通过深度优化冰蓄冷空调这一负荷侧调控对象,以显著提升新型配电系统中可再生能源的利用率,并深入挖掘其低碳运行潜力。 方法 引入具有虚拟储能特征的冰蓄冷空调作为调控对象,面向光伏消纳和冰蓄冷空调群低碳需求响应,提出了一种新型配电系统日前-日内多时间尺度、多目标优化策略。首先,建立了冰蓄冷空调运行特性及低碳需求响应模型;其次,以供电公司低碳需求响应激励成本最小、光伏生产商利润额最大、空调用户用电费用最小为优化目标,构建了日前多目标优化模型,采用非支配排序遗传Ⅱ型算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)实现了模型的高效求解,并基于多维偏好分析线性规划法筛选出多目标优化模型的最优解;再次,为消除日前预测误差对模型结果的影响,进一步构建了日内滚动修正优化模型;最后,采用测试算例分析了所建模型的有效性。 结果 基于日内滚动修正后所得最优方案使得供电公司及空调用户的成本降低约20%,光伏生产商的利润额提升约3%。 结论 基于多时间尺度的多目标优化调控方法既保障了各方主体的利益,又消除了预测误差对模型结果的影响,为新型配电系统低碳运行提供了重要技术支持。
中图分类号:
王奎, 余梦, 张海静, 李妍, 刘哲, 郭军红. 面向光伏消纳和冰蓄冷空调群低碳需求响应的新型配电系统多时间尺度优化策略[J]. 发电技术, 2025, 46(2): 284-295.
Kui WANG, Meng YU, Haijing ZHANG, Yan LI, Zhe LIU, Junhong GUO. Multi-Time Scale Optimization Strategy for New Distribution System Oriented to Photovoltaic Consumption and Low Carbon Demand Response of Ice Storage Air Conditioning Groups[J]. Power Generation Technology, 2025, 46(2): 284-295.
参数 | 数值 |
---|---|
蓄冰功率上限/kW | 1 500 |
融冰功率上限/kW | 2 500 |
空调机组直接制冷功率上限/kW | 4 800 |
蓄冰槽蓄冰量上限容量/(kW⋅h) | 16 000 |
供水温度/℃ | 15 |
制冷机组容量变化率 | 0.67 |
取冷效率 | 0.95 |
保温效率 | 0.98 |
蓄冰槽传热率 | 0.85 |
表1 冰蓄冷空调基本参数
Tab. 1 Basic parameters of ice storage air conditioning
参数 | 数值 |
---|---|
蓄冰功率上限/kW | 1 500 |
融冰功率上限/kW | 2 500 |
空调机组直接制冷功率上限/kW | 4 800 |
蓄冰槽蓄冰量上限容量/(kW⋅h) | 16 000 |
供水温度/℃ | 15 |
制冷机组容量变化率 | 0.67 |
取冷效率 | 0.95 |
保温效率 | 0.98 |
蓄冰槽传热率 | 0.85 |
参数 | 数值 |
---|---|
可调节负荷电量需求响应补偿单价/[元/(kW⋅h)] | 0.1 |
消纳光伏电量补贴单价/[元/(kW⋅h)] | 0.3 |
光伏生产商售电单价/[元/(kW⋅h)] | 0.4 |
弃光电量惩罚单价/[元/(kW⋅h)] | 0.85 |
碳排放碳税单价/[元/(kW⋅h)] | 0.35 |
机组频繁调节的单位功率差惩罚单价/[元/(kW⋅h)] | 0.5 |
尖时(08:00—11:00,20:00—22:00)电价/[元/(kW⋅h)] | 1.2 |
峰时(13:00—19:00)电价/[元/(kW⋅h)] | 0.8 |
谷时(00:00—07:00,22:00—24:00)电价/[元/(kW⋅h)] | 0.4 |
表2 低碳需求响应模型中价格相关参数
Tab. 2 Price related parameters in low carbon demand response models
参数 | 数值 |
---|---|
可调节负荷电量需求响应补偿单价/[元/(kW⋅h)] | 0.1 |
消纳光伏电量补贴单价/[元/(kW⋅h)] | 0.3 |
光伏生产商售电单价/[元/(kW⋅h)] | 0.4 |
弃光电量惩罚单价/[元/(kW⋅h)] | 0.85 |
碳排放碳税单价/[元/(kW⋅h)] | 0.35 |
机组频繁调节的单位功率差惩罚单价/[元/(kW⋅h)] | 0.5 |
尖时(08:00—11:00,20:00—22:00)电价/[元/(kW⋅h)] | 1.2 |
峰时(13:00—19:00)电价/[元/(kW⋅h)] | 0.8 |
谷时(00:00—07:00,22:00—24:00)电价/[元/(kW⋅h)] | 0.4 |
最优解 | 供电公司激励费用 | 光伏生产商利润 | 空调用户用电费用 |
---|---|---|---|
A | 29 488.75 | 31 635.19 | 51 252.78 |
B | 54 528.09 | 32 893.95 | 41 455.76 |
C | 56 875.49 | 30 715.04 | 25 862.51 |
D | 44 163.17 | 31 502.02 | 39 947.94 |
表3 Pareto解中4个特殊解对应优化结果special solutions in Pareto solutions (元)
Tab. 3 Optimization results corresponding to four
最优解 | 供电公司激励费用 | 光伏生产商利润 | 空调用户用电费用 |
---|---|---|---|
A | 29 488.75 | 31 635.19 | 51 252.78 |
B | 54 528.09 | 32 893.95 | 41 455.76 |
C | 56 875.49 | 30 715.04 | 25 862.51 |
D | 44 163.17 | 31 502.02 | 39 947.94 |
1 | 别朝红,王则凯,肖遥,等 .双碳目标下新型电力系统发展展望[J].新型电力系统,2023,1(2):116-131. |
BIE C H, WANG Z K, XIAO Y,et al .Outlook on the development of new power system under dual-carbon target[J].New Type Power System,2023,1(2):116-131. | |
2 | 史昭娣,朱宁,李政,等 .计及源-荷匹配的多区域多类型新能源系统优化规划方法[J].电力工程技术,2024,43(4):67-76. |
SHI Z D, ZHU N, LI Z,et al .Optimization planning method of multi-region and multi-type renewable energy generation considering source-load matching[J].Electric Power Engineering Technology,2024,43(4):67-76. | |
3 | 丁坤,孙亚璐,王湘,等 .考虑置信容量和调峰能力的新能源基地光热电站配置方法[J].广东电力,2024,37(3):25-34. |
DING K, SUN Y L, WANG X,et al .Concentrating solar power plant configuration method of renewable energy base with consideration of confidence capacity and peak shaving capcity[J].Guangdong Electric Power,2024,37(3):25-34. | |
4 | 张开鹏,杨雪梅,张宏甜,等 .考虑“光伏-储能”耦合参与调峰的配电网氢储能优化配置[J].电网与清洁能源,2023,39(10):95-103. |
ZHANG K P, YANG X M, ZHANG H T,et al .A study on the optimal configuration of hydrogen energy storage in the distribution network considering “photovoltaic-energy storage” coupling participating and peak shaving[J].Power System and Clean Energy,2023,39(10):95-103. | |
5 | 张程,罗玉锦,陈昌亮 .考虑源荷不确定的多园区微网与共享储能电站协同优化运行[J].电力系统保护与控制,2023,51(24):77-89. |
ZHANG C, LUO Y J, CHEN C L .Collaborative optimization operation of multi park microgrids and shared energy storage power stations considering source load uncertainty[J].Power System Protection and Control,2023,51(24):77-89. | |
6 | 俞晓荣,徐青山,杜璞良,等 .融合注意力机制与SAC算法的虚拟电厂多能流低碳调度[J].电力工程技术,2024,43(5):233-246. |
YU X R, XU Q S, DU P L,et al .Optimizing multi-energy fow scheduling of hydrogen-inclusive virtual power plants based on deep reinforcement learning under dual-carbon targets[J].Electric Power Engineering Technology,2024,43(5):233-246. | |
7 | 田子豪,王怡,杨知方 .考虑冰蓄冷空调投资效益的分时电价优化设计[J].东北电力大学学报,2022,42(6):19-27. |
TIAN Z H, WANG Y, YANG Z F .Optimal design of time-of-use price considering the investment benefit of ice storage air conditioning[J].Journal of Northeast Electric Power University,2022,42(6):19-27. | |
8 | 曹建伟,黄申,孙毅,等 .冰蓄冷空调群参与风光本地消纳的微网随机经济调度策略[J].南方电网技术,2022,16(8):68-78. |
CAO J W, HUANG S, SUN Y,et al .Microgrid stochastic economic scheduling strategy of ice storage air conditioning group participating in local consumption of wind power and photovoltaics[J].Southern Power System Technology,2022,16(8):68-78. | |
9 | 孙可,何德,李春筱,等 .考虑冰蓄冷空调多模式的工厂综合能源系统多能协同优化模型[J].电力建设,2017,38(12):12-19. |
SUN K, HE D, LI C X,et al .Multi-energy cooperative optimization model of factory IES considering multi-model of ice storage[J].Electric Power Construction,2017,38(12):12-19. | |
10 | 张勇军,李其霖,黄健昂 .冰蓄冷空调直接供冷电费贯序削减趋优控制方法[J].电力科学与技术学报,2021,36(3):92-99. |
ZHANG Y J, LI Q L, HUANG J A .An optimal control method of ice-storage air conditioning based on sequential reduction in direct cooling cost[J].Journal of Electric Power Science and Technology,2021,36(3):92-99. | |
11 | 徐慧慧,田云飞,缪猛,等 .计及碳交易和需求响应的虚拟电厂低碳经济调度[J].智慧电力,2023,51(8):1-7. doi:10.3969/j.issn.1673-7598.2023.08.001 |
XU H H, TIAN Y F, MIAO M,et al .Low carbon economy dispatch of virtual power plants considering carbon trading and demand response[J].Smart Power,2023,51(8):1-7. doi:10.3969/j.issn.1673-7598.2023.08.001 | |
12 | 朱西平,刘明航,江强,等 .考虑需求响应和碳交易的含P2G综合能源系统低碳经济调度[J].电测与仪表,2024,61(10):1-7. |
ZHU X P, LIU M H, JIANG Q,et al .Low carbon economic scheduling of P2G integrated energy system considering demand response and carbon trading[J].Electrical Measurement & Instrumentation,2024,61(10):1-7. | |
13 | 谭玲玲,孙鹏,郭沛璇,等 .含氢储能的微电网低碳-经济协同优化配置[J].发电技术,2024,45(5):983-994. |
TAN L L, SUN P, GUO P X,et al .Low-carbon and economic synergy optimization configuration for microgrid with hydrogen energy storage[J].Power Generation Technology,2024,45(5):983-994. | |
14 | 赵杰,王聪,李冠冠,等 .考虑需求响应的多微网P2P能源交易低碳运行策略[J].电力建设,2023,44(12):54-65. |
ZHAO J, WANG C, LI G G,et al .Low-carbon operation strategy for P2P energy trading among multiple microgrids considering demand response[J].Electric Power Construction,2023,44(12):54-65. | |
15 | 吴艳娟,张亦炫,王云亮 .计及多重需求响应的综合能源系统多时间尺度低碳运行[J].电力工程技术,2024,43(2):21-32. |
WU Y J, ZHANG Y X, WANG Y L .Multi-time scale low carbon operation integrated energy system considering multiple integrated demand responses[J].Electric Power Engineering Technology,2024,43(2):21-32. | |
16 | 孙志媛,孙艳,刘默斯,等 .考虑碳流需求响应的电力系统低碳运行策略[J].中国电力,2023,56(11):95-103. |
SUN Z Y, SUN Y, LIU M S,et al .Low-carbon operation strategy of power system considering carbon flow demand response[J].Electric Power,2023,56(11):95-103. | |
17 | 车彬,张泽龙,杨燕 .考虑V2G储能特性与负荷需求响应的主动配电网低碳鲁棒调度[J].电网与清洁能源,2024,40(1):29-39. |
CHE B, ZHANG Z L, YANG Y .Research on the low-carbon robust dispatch of active distribution networks considering storage characteristics of V2G and load demand response[J].Power System and Clean Energy,2024,40(1):29-39. | |
18 | 王守相,王瀚樟,赵倩宇,等 .面向配电网光伏接纳能力提升的分时电价优化方法[J].电力系统自动化,2023,47(10):38-46. |
WANG S X, WANG H Z, ZHAO Q Y,et al .Optimization method of time-of-use electricity price for improving photovoltaic hosting capacity of distribution network[J].Automation of Electric Power Systems,2023,47(10):38-46. | |
19 | 王文超,庞丹,成龙,等 .考虑电价型需求响应的交直流混合配电网优化调度[J].电网技术,2019,43(5):1675-1682. |
WANG W C, PANG D, CHENG L,et al .Optimal dispatch approach for hybrid AC/DC distribution networks considering price-based demand response[J].Power System Technology,2019,43(5):1675-1682. | |
20 | LI X, ZHANG R, BAI L,et al .Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response[J].Applied Energy,2018,210:1219-1228. doi:10.1016/j.apenergy.2017.08.119 |
21 | HE L, LU Z, ZHANG J,et al .Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas[J].Applied Energy,2018,224:357-370. doi:10.1016/j.apenergy.2018.04.119 |
22 | 王金浩,樊瑞,肖萤,等 .基于低碳需求响应的新型电力系统中源-网-荷-储协调的优化调度[J].太原理工大学学报,2024,55(1):46-56. |
WANG J H, FAN R, XIAO Y,et al .Optimal dispatch of coordinated source-grid-load-storage in new power system based on low-carbon demand response[J].Journal of Taiyuan University of Technology,2024,55(1):46-56. | |
23 | 袁红斌,易晓东 .计及碳捕集和需求响应的综合能源系统低碳经济调度策略[J].电力需求侧管理,2024,26(1):86-92. |
YUAN H B, YI X D .A low carbon economic dispatch strategy for integrated energy systems with carbon capture and demand response[J].Power Demand Side Management,2024,26(1):86-92. | |
24 | 栗会峰,李铁成,李均强,等 .FDIA-蠕虫混合攻击下的配电网信息物理系统弹性拓扑优化配置[J].电力科学与技术学报,2024,39(4):20-32. |
LI H F, LI T C, LI J Q,et al .Resilient topology optimization on cyber-physical system of distribution networks under FDIA-worm hybrid attacks[J].Journal of Electric Power Science and Technology,2024,39(4):20-32. | |
25 | 李文,卜凡鹏,张潇桐,等 .基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J].发电技术,2024,45(6):1186-1200. |
LI W, BU F P, ZHANG X T,et al .Optimal operation method of electric-hydrogen hybrid energy storage microgrid system based on typical commercial operation mode[J].Power Generation Technology,2024,45(6):1186-1200. | |
26 | ABAPOUR S, MOHAMMADI-IVATLOO B, HAGH M T .A Bayesian game theoretic based bidding strategy for demand response aggregators in electricity markets[J].Sustainable Cities and Society,2020,54:101787. doi:10.1016/j.scs.2019.101787 |
27 | 可思为,董萍,马铭宇,等 .考虑风光荷时空互补的多能源绿色数据中心多目标配置方法[J].电力系统保护与控制,2024,52(22):22-33. |
KE S W, DONG P, MA M Y,et al .A multi-objective allocation method for multi-energy green data centers considering wind,solar and load spatial-temporal complementarity[J].Power System Protection and Control,2024,52(22):22-33. | |
28 | AHMADI M H, SAYYAADI H, DEHGHANI S,et al .Designing a solar powered stirling heat engine based on multiple criteria:maximized thermal efficiency and power[J].Energy Conversion and Management,2013,75:282-291. doi:10.1016/j.enconman.2013.06.025 |
29 | SAYYAADI H, MEHRABIPOUR R .Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger[J].Energy,2012,38(1):362-375. doi:10.1016/j.energy.2011.11.048 |
30 | 胡枭 .考虑能量品质的区域综合能源系统优化规划研究[D].上海:上海交通大学,2020. |
HU X .Research on optimal planning of regional integrated energy systems considering energy quality[D].Shanghai:Shanghai Jiao Tong University,2020. |
[1] | 赵睿智, 练小林, 应凯文, 柳杰, 李丝雨, 高扬. 基于改进二进制粒子群优化算法的综合能源系统故障定位研究[J]. 发电技术, 2025, 46(2): 231-239. |
[2] | 孙勇, 高子航, 侯泽胤, 李德鑫, 王尧, 张海锋, 陆帅. 面向综合能源系统运行的气网聚合建模及辨识方法[J]. 发电技术, 2025, 46(2): 274-283. |
[3] | 胡山鹰, 金涌, 张臻烨. 发展新质生产力,实现碳中和[J]. 发电技术, 2025, 46(1): 1-8. |
[4] | 杨剑锋, 李婷, 杨爱民, 冯子宁. 含电能路由器的光伏配电网电压越限问题潮流优化研究[J]. 发电技术, 2025, 46(1): 113-125. |
[5] | 兰国芹, 陆烨, 阚严生, 张继广, 王欢欢, 钟芳, 王承才, 肖黎明, 王照阳. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46(1): 19-30. |
[6] | 崔露, 刘世林, 苗婉, 王青. 考虑电转氢和需求响应的风光储综合充能站优化运行策略[J]. 发电技术, 2025, 46(1): 31-41. |
[7] | 李文, 卜凡鹏, 张潇桐, 杨创东, 张静. 基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J]. 发电技术, 2024, 45(6): 1186-1200. |
[8] | 张家龙, 宋彭, 瞿体明. 磁约束可控核聚变装置的磁体系统综述[J]. 发电技术, 2024, 45(6): 995-1015. |
[9] | 吴任博, 黄奕俊. 高比例可再生能源接入下含自愈性能的分布式配电网重构策略研究[J]. 发电技术, 2024, 45(5): 975-982. |
[10] | 谭玲玲, 孙鹏, 郭沛璇, 李元芳, 吉兴全, 张玉敏. 含氢储能的微电网低碳-经济协同优化配置[J]. 发电技术, 2024, 45(5): 983-994. |
[11] | 孟梓睿, 刘雅雯, 巨星. 光伏-压电复合独立供电系统的运行分析[J]. 发电技术, 2024, 45(4): 696-704. |
[12] | 王耀函, 张扬帆, 赵庆旭, 王晓东, 梁恺, 王玙. 低电压穿越过程中风电机组载荷特性联合仿真研究[J]. 发电技术, 2024, 45(4): 705-715. |
[13] | 杜婉琳, 王玲, 罗威, 朱远哲, 吕鸿, 马潇男, 周霞. 基于深度强化学习的有源配电网电压分层控制策略[J]. 发电技术, 2024, 45(4): 734-743. |
[14] | 王伟杰, 曾鑫洁, 徐远途, 李书仪, 阮灿华, 童宁, 武小梅. 基于正序突变量相轨迹辨识的可再生能源配电网电流保护[J]. 发电技术, 2024, 45(4): 753-764. |
[15] | 张崇, 李博, 李笑宇, 刘洪波, 刘永发. 基于虚拟同步机控制参数自适应调节的储能系统调频方法[J]. 发电技术, 2024, 45(4): 772-780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||