发电技术 ›› 2025, Vol. 46 ›› Issue (2): 231-239.DOI: 10.12096/j.2096-4528.pgt.24242

• 基于群体智能的综合能源系统建模仿真及优化运行 • 上一篇    

基于改进二进制粒子群优化算法的综合能源系统故障定位研究

赵睿智1, 练小林1, 应凯文1, 柳杰1, 李丝雨1, 高扬2   

  1. 1.国网上海市电力公司长兴供电公司,上海市 崇明区 201913
    2.电力传输与功率变换;控制教育部重点实验室(上海交通大学),上海市 闵行区 200240
  • 收稿日期:2024-11-25 修回日期:2025-02-16 出版日期:2025-04-30 发布日期:2025-04-23
  • 作者简介:赵睿智(1993),男,硕士,工程师,从事智能电网、大数据及人工智能等方面的研究,845003063@qq.com
    练小林(1994),女,硕士,工程师,从事电网调度、源网荷储协调优化等方面的研究,lianxiaolinxy@163.com
    应凯文(1993),男,硕士,工程师,从事配电网智能管控技术及设备研究,yingkaiwen@foxmail.com
    柳杰(1992),男,工程师,研究方向为电网调控运行、新能源管理,18817392874@163.com
    李丝雨(1995),女,工程师,研究方向为新能源并网稳定性、虚拟同步发电机技术,781661922@qq.com
    高扬(1990),男,博士,助理研究员,研究方向为虚拟电厂、微电网建模及优化运行,本文通信作者,jjgybill@sjtu.edu.cn
  • 基金资助:
    国网上海市电力公司科技项目(5209KZ240003)

Research on Fault Location in Integrated Energy Systems Based on Improved Binary Particle Swarm Optimization Algorithm

Ruizhi ZHAO1, Xiaolin LIAN1, Kaiwen YING1, Jie LIU1, Siyu LI1, Yang GAO2   

  1. 1.Changxing Power Supply Company of State Grid Shanghai Electric Power Company, Chongming District, Shanghai 201913, China
    2.Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education (Shanghai Jiao Tong University), Minhang District, Shanghai 200240, China
  • Received:2024-11-25 Revised:2025-02-16 Published:2025-04-30 Online:2025-04-23
  • Supported by:
    State Grid Shanghai Electric Power Company Technology Project(5209KZ240003)

摘要:

目的 随着电力系统覆盖范围的持续扩大,综合能源系统结构日益复杂化,配电网作为能源系统的重要结构,这一趋势显著降低了配电网故障定位的精确度。因此,提出一种基于改进二进制粒子群优化算法的配电网故障定位方法。 方法 在二进制粒子进行每一次迭代的过程中,首先对粒子的位置实施了自适应变异操作;进一步地,在惯性权重的设置中引入了自适应方法,构建了一种具备双重自适应特性的二进制粒子群算法。 结果 在标准辐射型配电网和包含分布式电源的标准辐射型配电网中,改进后的二进制粒子群算法均能准确锁定故障区段。 结论 与传统的二进制粒子群算法和遗传算法相比,改进算法在收敛能力上展现出更强的稳健性,不会因故障类型的差异而受到影响,具有更强的可靠性,因此更加适用于复杂多变的配电网环境故障定位任务。

关键词: 综合能源, 配电网, 故障定位, 分布式电源, 二进制粒子群优化(BPSO)算法, 双重自适应

Abstract:

Objectives The coverage of power systems continues to expand, and the structure of integrated energy systems is becoming increasingly complex. This trend leads to a significant decline in the accuracy of fault location in the distribution network that is a critical component of the energy system. To address this, a fault location method for distribution network based on an improved binary particle swarm optimization (BPSO) algorithm is proposed. Methods During each iteration of the binary particles, an adaptive mutation operation is first performed on the position of the particle. Furthermore, an adaptive method is introduced into the setting of inertia weight, establishing a BPSO algorithm with dual adaptive characteristics. Results In the standard radial distribution networks and those incorporating distributed generation, the improved BPSO algorithm can accurately pinpoint fault sections. Conclusions Compared with the traditional BPSO algorithm and genetic algorithm, the improved algorithm demonstrates stronger robustness in convergence ability. It remains unaffected by differences in fault types and has greater reliability. Therefore, it is more suitable for fault location tasks in complex and dynamic distribution network environments.

Key words: integrated energy, distribution network, fault location, distributed generation, binary particle swarm optimization (BPSO) algorithm, dual adaptive

中图分类号: