发电技术 ›› 2024, Vol. 45 ›› Issue (6): 995-1015.DOI: 10.12096/j.2096-4528.pgt.24119
• 可控核聚变及其发电技术 • 下一篇
张家龙1,2, 宋彭1,2, 瞿体明1,2
收稿日期:
2024-06-23
修回日期:
2024-09-08
出版日期:
2024-12-31
发布日期:
2024-12-30
通讯作者:
瞿体明
作者简介:
基金资助:
Jialong ZHANG1,2, Peng SONG1,2, Timing QU1,2
Received:
2024-06-23
Revised:
2024-09-08
Published:
2024-12-31
Online:
2024-12-30
Contact:
Timing QU
Supported by:
摘要:
目的 磁约束可控核聚变方案被视为未来解决全球能源问题的重要途径,作为磁约束聚变装置的核心元件,磁体在产生和维持等离子体稳定状态中起着关键作用。为此,对国内外典型磁约束可控聚变装置的磁体结构和规格进行了综述。 方法 回顾了聚变磁体从铜基到低温超导乃至高温超导的技术演变,系统归纳了各类典型聚变装置的磁体系统结构及其性能参数。同时,探讨了当前磁体研发过程中面临的技术挑战,并对未来发展进行了展望。 结论 磁体技术的进步对于提升聚变装置性能和加速实现聚变能源的商业化至关重要。随着高温超导材料的应用和新型磁体设计的不断优化,聚变能源的实用化正逐步向现实迈进。
中图分类号:
张家龙, 宋彭, 瞿体明. 磁约束可控核聚变装置的磁体系统综述[J]. 发电技术, 2024, 45(6): 995-1015.
Jialong ZHANG, Peng SONG, Timing QU. Overview of Magnetic Confinement Controlled Nuclear Fusion Reactors and Superconducting Magnet Technologies[J]. Power Generation Technology, 2024, 45(6): 995-1015.
参数 | 系统名称 | ||||
---|---|---|---|---|---|
TFTR | JET | JT-60 | Alcator C-Mod | HL-3 | |
首次运行年份 | 1982 | 1983 | 1985 | 1992 | 2020 |
主半径/m | 2.48 | 2.96 | 3.32 | 0.68 | 1.78 |
TF线圈数量/个 | 20 | 32 | 18 | 20 | 20 |
TF线圈电流/kA | 73.3 | 67 | 52.1 | 250 | 140(191) |
中心磁场/T | 5.2 | 3.45 | 4.5 | 8.0 | 2.2(3) |
等离子体电流/MA | 2.5 | 4.8 | 2.7 | 2 | 2.5(3) |
国家或地区 | 美国 | 欧盟 | 日本 | 美国 | 中国 |
表1 典型铜基托卡马克装置磁体系统的部分性能参数
Tab. 1 Some performance parameters of the magnet system of typical copper-based Tokamak devices
参数 | 系统名称 | ||||
---|---|---|---|---|---|
TFTR | JET | JT-60 | Alcator C-Mod | HL-3 | |
首次运行年份 | 1982 | 1983 | 1985 | 1992 | 2020 |
主半径/m | 2.48 | 2.96 | 3.32 | 0.68 | 1.78 |
TF线圈数量/个 | 20 | 32 | 18 | 20 | 20 |
TF线圈电流/kA | 73.3 | 67 | 52.1 | 250 | 140(191) |
中心磁场/T | 5.2 | 3.45 | 4.5 | 8.0 | 2.2(3) |
等离子体电流/MA | 2.5 | 4.8 | 2.7 | 2 | 2.5(3) |
国家或地区 | 美国 | 欧盟 | 日本 | 美国 | 中国 |
参数 | 系统名称 | |||
---|---|---|---|---|
EAST | KSTAR | CFETR | ITER | |
首次运行年份 | 2006 | 2008 | 2035(预计) | 2033(预计) |
主半径/m | 1.85 | 1.8 | 7.2 | 6.2 |
TF线圈数量/个 | 16 | 16 | 16 | 18 |
TF线圈电流/kA | 14.5 | 35.2 | 84.6 | 68 |
中心磁场/T | 3.5 | 3.5 | 6.5 | 5.3 |
等离子体电流/MA | 1.0 | 2.0 | 13.78 | 15 |
国家或地区 | 中国 | 韩国 | 中国 | 国际 |
表2 典型低温超导托卡马克主要性能参数
Tab.2 Main performance parameters of typical low-temperature superconducting Tokamak devices
参数 | 系统名称 | |||
---|---|---|---|---|
EAST | KSTAR | CFETR | ITER | |
首次运行年份 | 2006 | 2008 | 2035(预计) | 2033(预计) |
主半径/m | 1.85 | 1.8 | 7.2 | 6.2 |
TF线圈数量/个 | 16 | 16 | 16 | 18 |
TF线圈电流/kA | 14.5 | 35.2 | 84.6 | 68 |
中心磁场/T | 3.5 | 3.5 | 6.5 | 5.3 |
等离子体电流/MA | 1.0 | 2.0 | 13.78 | 15 |
国家或地区 | 中国 | 韩国 | 中国 | 国际 |
信息 | 公司名称 | |||
---|---|---|---|---|
Commonwealth Fusion Systems | Tokamak Energy | 能量 奇点 | 星环 聚能 | |
托卡马克名称 | SPARC | Demo4 | 洪荒70 | CTRFR-1 |
建成时间 | 2025年 (预计) | 2024年 (预计) | 2024年 | 2025年 (预计) |
环向磁场/T | 12.2 | 18 | 0.6 | 3~5 |
TF数量/个 | 18 | 14 | 12 | 16 |
国家 | 美国 | 英国 | 中国 | 中国 |
表3 部分商业化高温超导托卡马克主要信息
Tab. 3 Main information of some commercial high-temperature superconducting Tokamak devices
信息 | 公司名称 | |||
---|---|---|---|---|
Commonwealth Fusion Systems | Tokamak Energy | 能量 奇点 | 星环 聚能 | |
托卡马克名称 | SPARC | Demo4 | 洪荒70 | CTRFR-1 |
建成时间 | 2025年 (预计) | 2024年 (预计) | 2024年 | 2025年 (预计) |
环向磁场/T | 12.2 | 18 | 0.6 | 3~5 |
TF数量/个 | 18 | 14 | 12 | 16 |
国家 | 美国 | 英国 | 中国 | 中国 |
1 | 杨宇,于宏源,鲁刚,等 .世界能源百年变局与国家能源安全[J].自然资源学报,2020,35(11):2803-2820. doi:10.31497/zrzyxb.20201119 |
YANG Y, YU H Y, LU G,et al .Interview on the unprecedented changes of energy geopolitics and national energy security[J].Journal of Natural Resources,2020,35(11):2803-2820. doi:10.31497/zrzyxb.20201119 | |
2 | 王腾 .超导磁体技术与磁约束核聚变[J].南方能源建设,2022,9(4):108-117. |
WANG T .Superconducting magnet technology and magnetic confinement fusion[J].Southern Energy Construction,2022,9(4):108-117. | |
3 | 万宝年 .我国磁约束聚变研究进展和展望[J].中国科学基金,2008,22(1):1-7. |
WAN B N .Recent progress and perspective of magnetic confined fusion in China[J].Bulletin of National Natural Science Foundation of China,2008,22(1):1-7. | |
4 | 李倩 .典型托卡马克装置环向场线圈电磁模拟分析[D].成都:电子科技大学,2009. doi:10.1109/asemd.2009.5306615 |
LI Q .Electromagnetic simulation analysis of the toroidal field coil in typical Tokamak devices[D].Chengdu:University of Electronic Science and Technology of China,2009. doi:10.1109/asemd.2009.5306615 | |
5 | WALKER M L, DE VRIES P, FELICI F,et al .Introduction to Tokamak plasma control[C]//2020 American Control Conference (ACC).Denver,United States:IEEE,2020:2901-2918. doi:10.23919/acc45564.2020.9147561 |
6 | 王乃彦 .聚变能及其未来[M].北京:清华大学出版社,2001. |
WANG N Y .Fusion energy and its future[M].Beijing:Tsinghua University Press,2001. | |
7 | BARBARINO M .A brief history of nuclear fusion[J].Nature Physics,2020,16(9):890-893. doi:10.1038/s41567-020-0940-7 |
8 | ONGENA J, KOCH R, WOLF R,et al .Magnetic-confinement fusion[J].Nature Physics,2016,12(5):398-410. doi:10.1038/nphys3745 |
9 | POST R F .Sixteen lectures on controlled thermonuclear reactions[M].United States:University of California Radiation Laboratory,1954. |
10 | HUANG C, LI L .Magnetic confinement fusion:a brief review[J].Frontiers in Energy,2018,12(2):305-313. doi:10.1007/s11708-018-0539-1 |
11 | SPITZER L .The stellarator concept[J].The Physics of Fluids,1958,1(4):253-264. doi:10.1063/1.1705883 |
12 | 陈凤翔 .一个不可或缺的真相:聚变能源如何拯救地球[M].北京:科学出版社,2020. |
CHEN F X .An indispensable truth:how fusion power can save the earth[M].Beijing:Science Press,2020. | |
13 | 李建刚 .托卡马克研究的现状及发展[J].物理,2016,45(2):88-97. |
LI J G .The status and progress of Tokamak research[J].Physics,2016,45(2):88-97. | |
14 | SHARMA R G .Superconductivity:basics and applications to magnets[M].Cham:Springer,2015. doi:10.1007/978-3-319-13713-1_10 |
15 | 张继明 .典型托卡马克装置环向场线圈受力—结构分析[D].成都:电子科技大学,2009. doi:10.1109/asemd.2009.5306615 |
ZHANG J M .Force-structure analysis of the toroidal field coil in typical Tokamak devices[D].Chengdu:University of Electronic Science and Technology of China,2009. doi:10.1109/asemd.2009.5306615 | |
16 | 刘晓龙,李广生,邹晖,等 .HL-2M装置环向场线圈的工程研制与调试[J].核聚变与等离子体物理,2021,41(S1):312-315. |
LIU X L, LI G S, ZOU H,et al .Engineering development and commissioning of the toroidal field coils of the HL-2M device[J].Nuclear Fusion and Plasma Physics,2021,41(S1):312-315. | |
17 | BELL M G .Magnetic fusion energy[M].Cambridge:Woodhead Publishing,2016. doi:10.1016/b978-0-08-100315-2.00006-4 |
18 | IRBY J, GWINN D, BECK W,et al .Alcator C-mod design,engineering,and disruption research[J].Fusion Science and Technology,2007,51(3):460-475. doi:10.13182/fst07-a1433 |
19 | YOSHIKAWA M .An overview of the JT-60 project[J].Fusion Engineering and Design,1987,5(1):3-8. doi:10.1016/s0920-3796(87)90520-5 |
20 | HUGUET M, DIETZ K, HEMMERICH J,et al .The JET machine:design,construction,and operation of the major systems[J].Fusion technology,1987,11(1):43-70. doi:10.13182/fst87-a25000 |
21 | NEILSON G .Magnetic fusion energy:from experiments to power plants[M].Cambridge:Woodhead Publishing,2016. |
22 | SMITH G E, PUNCHARD W F B .TFTR toroidal field coil design[C]//1977 Symposium on fusion research project.United States. 1977. |
23 | PRINCETON UNIVERSITY P P L .Tokamak fusion test reactor[M].Princeton:Princeton University,Plasma Physics Laboratory,1983. |
24 | VON HALLE A .Final operations of the Tokamak fusion test reactor (TFTR)[C]//1997 17th IEEE/NPSS Symposium Fusion Engineering (Cat-No-97CH36131).San Diego,CA,USA:IEEE,1997:65-69. doi:10.1109/fusion.1997.687694 |
25 | GIBSON A .The JET project:a step towards the production of power by nuclear fusion[J].Naturwissenschaften,1979,66(10):481-488. doi:10.1007/bf00404857 |
26 | REBUT P H .The joint european torus (jet)[J].The European Physical Journal H,2018,43(4/5):459-497. doi:10.1140/epjh/e2017-70068-y |
27 | NORDLUND K H .European research roadmap to the realisation of fusion energy[M].Munich:EUROFUSION,2018. |
28 | WESSON J .The science of jet[R/OL].(2014-11-01)[2024-05-23].. |
29 | LAST J, BERTOLINI E, HUGUET M,et al .Upgrading the JET magnet system for 7MA plasma[J].Fusion Technology,1989,15(2P2A):267-274. |
30 | KISHIMOTO H, AIKAWA H, OIKAWA A,et al .Construction and testing of JT-60[J].Fusion Engineering and Design,1987,5(1):9-25. doi:10.1016/s0920-3796(87)90532-1 |
31 | YOSHIKAWA M, TOMABECHI K .JT-60 project and its present status[J].Nuclear Technology-Fusion,1983,4(2P2):299-307. |
32 | SHIMOMURA Y, SHIMIZU K, HIRAYAMA T,et al .JT-60 program[J].Journal of Nuclear Materials,1984,128:19-25. doi:10.1016/0022-3115(84)90324-6 |
33 | KIKUCHI M .The large Tokamak JT-60:a history of the fight to achieve the Japanese fusion research mission[J].The European Physical Journal H,2018,43(4):551-577. doi:10.1140/epjh/e2018-90054-2 |
34 | SHIMIZU M, OHKUBO M, YAMAMOTO M,et al .Design,fabrication and performance test of JT-60:structural and thermal aspects[J].Nuclear Engineering and DesignFusion,1986,3(3):249-264. doi:10.1016/s0920-3796(85)80079-x |
35 | KIKUCHI M, TEAM J .Plasma physics found in JT‐60 Tokamak over the last 20 years[C]//2009 AIP Conference Proceedings.Kuala Lumpur (Malaysia):AIP,2009:161-167. doi:10.1063/1.3192231 |
36 | BARABASCHI P, KAMADA Y, SHIRAI H,et al .Progress of the JT-60SA project[J].Nuclear Fusion,2019,59(11):112005. doi:10.1088/1741-4326/ab03f6 |
37 | FAIRFAX S .Alcator C-MOD[C]//1991 14th IEEE/NPSS Symposium Fusion Engineering.San Diego,CA,USA:IEEE. 1991:656-661. |
38 | MARMAR E .Alcator C-Mod (Final Technical Report)[R].Cambridge,MA (United States):Massachusetts Inst.of Technology (MIT),2018. doi:10.2172/1457696 |
39 | BURKE W, KANOJIA A, STILLERMAN J .Real-time high-field measurements of joint resistance in the Alcator C-Mod TF coil[C]//2015 IEEE 26th Symposium on Fusion Engineering (SOFE).Austin,TX,USA:IEEE,2015:1-5. doi:10.1109/sofe.2015.7482375 |
40 | HUTCHINSON I, BOIVIN R, BOMBARDA F,et al .First results from Alcator‐C‐MOD[J].Physics of Plasmas,1994,1(5):1511-1518. doi:10.1063/1.870701 |
41 | BECKER H, BESEN M, CHILDS R,et al .Engineering features of the Alcator C-Mod Tokamak[C]//1987 Twelfth Symposium on Engineering Problems of Fusion Research.Monterey,CA,USA:IEEE,1987:11-14. |
42 | FAIRFAX S A, MONTGOMERY D B .Anatomy of the PF magnet failure in Alcator C-MOD[C]//1993 15th IEEE/NPSS Symposium Fusion Engineering.Hyannis,MA,USA:IEEE,1993:399-403. |
43 | 丁玄同 .HL-2A托卡马克实验进展和科学创新[J].物理,2010,39(6):390-399. |
DING X T .Experimental progress and innovation on the HL-2A Tokamak[J].Physics,2010,39(6):390-399. | |
44 | 李强 .HL-2A托卡马克装置的工程和实验概况[J].原子能科学技术,2009,43(S2):204-209. |
LI Q .Overview of the engineering and experiments of the HL-2A Tokamak device[J].Atomic Energy Science and Technology,2009,43(S2):204-209. | |
45 | 核工业西南物理研究院 .中国环流器二号M装置(HL-2M)[EB/OL].(2020-01-01)[2024-05-23].. |
Southwestern Institute of Physics .China HL-2M Device (HL-2M)[EB/OL].(2020-01-01)[2024-05-23].. | |
46 | 刘永,李强 .中国环流器二号M(HL-2M)托卡马克主机研制进展[J].中国核电,2020,13(6):747-752. |
LIU Y, LI Q .The development progress of the tokamak machine for HL-2M[J].China Nuclear Power,2020,13(6):747-752. | |
47 | 邹晖,李广生,蔡立君,等 .HL-2M环向场线圈的结构设计[J].核聚变与等离子体物理,2016,36(2):136-142. |
ZOU H, LI G S, CAI L J,et al .Structural design of the toroidal coils for the HL-2M[J].Nuclear Fusion and Plasma Physics,2016,36(2):136-142. | |
48 | LI Q, LI G S, ZOU H,et al .Design and development of magnets for HL-2M Tokamak[J].IEEE Transactions on Applied Superconductivity,2016,26(7):1-6. doi:10.1109/tasc.2016.2574342 |
49 | LIU X, ZOU H, QIU Y,et al .Design and construction of toroidal field coils on HL-2M Tokamak[J].IEEE Transactions on Applied Superconductivity,2021,31(8):1-4. doi:10.1109/tasc.2021.3110474 |
50 | 邹晖,李广生,邱银,等 .HL-2M装置极向场线圈的结构设计与制造[J].核聚变与等离子体物理,2021,41(S1):307-311. |
ZOU H, LI G S, QIU Y,et al .Structural design and fabrication of HL-2M poloidal field coils[J].Nuclear Fusion and Plasma Physics,2021,41(S1):307-311. | |
51 | ZHONG W .China’s HL-3 Tokamak achieves H-mode operation with 1 MA plasma current[J].The innovation,2024,5(1):100555. doi:10.1016/j.xinn.2023.100555 |
52 | 央视新闻 .国际首次!新一代人造太阳“中国环流三号”取得新成果[EB/OL].(2024-06-13)[2024-07-20].. |
CCTV News .For the first time in the world! New achievements in the new generation artificial sun “HL-3”[EB/OL].(2024-06-13)[2024-07-20].. | |
53 | MARCUS F B .Systems approaches to nuclear fusion reactors[M].Cham:Springer,2022. doi:10.1007/978-3-031-17711-8_8 |
54 | HOLTKAMP N .An overview of the ITER project[J].Fusion Engineering and Design,2007,82(5/14):427-434. doi:10.1016/j.fusengdes.2007.03.029 |
55 | AYMAR R, BARABASCHI P, SHIMOMURA Y .The ITER design[J].Plasma Physics and Controlled Fusion,2002,44(5):519-565. doi:10.1088/0741-3335/44/5/304 |
56 | COBLENTZ L .22nd ITER Council affirms project progress to achieve First Plasma in 2025[EB/OL].(2018-06-21)[2024-05-20].. |
57 | COBLENTZ L .Summary of presentation by Pietro Barabaschi,ITER director-general[EB/OL].(2024-07-03)[2024-07-20].. |
58 | MITCHELL N, BESSETTE D, GALLIX R,et al .The ITER magnet system[J].IEEE Transactions on Applied Superconductivity,2008,18(2):435-440. doi:10.1109/tasc.2008.921232 |
59 | MITCHELL N, BAUER P, BESSETTE D,et al .Status of the ITER magnets[J].Fusion Engineering and Design,2009,84(2/6):113-121. doi:10.1016/j.fusengdes.2009.01.006 |
60 | MITCHELL N, DEVRED A, LIBEYRE P,et al .The ITER magnets:design and construction status[J].IEEE Transactions on Applied Superconductivity,2011,22(3):4200809. doi:10.1109/tasc.2011.2174560 |
61 | SONG Y, WU W, DU S .Tokamak engineering mechanics[M].Berlin:Springer,2014. doi:10.1007/978-3-642-39575-8 |
62 | WU Y, LI J, SHEN G,et al .Preliminary design of CFETR TF prototype coil[J].Journal of Fusion Energy,2021,40(1):5. doi:10.1007/s10894-021-00291-8 |
63 | ZHENG J, SONG Y, LIU F,et al .Progress in engineering design of CFETR toroidal field superconducting magnet[J].Fusion Engineering and Design,2022,177:113063. doi:10.1016/j.fusengdes.2022.113063 |
64 | THOME R J, TARRH J M .MHD and fusion magnets:field and force design concepts[M].New York:Wiley,1982. |
65 | SONG Y, LI J, WAN Y,et al .Engineering design of the CFETR machine[J].Fusion Engineering and Design,2022,183:113247. |
66 | HAO Q, HUSSAIN M T, DAI C,et al .Conductor design and performance analysis for CFETR magnet[J].Fusion Engineering and Design,2022,182:113224. doi:10.1016/j.fusengdes.2022.113224 |
67 | ZHU C, ZHENG J, LIU X,et al .Electromagnetic and mechanical analysis of CFETR toroidal field coils[J].Fusion Engineering and Design,2015,101:9-16. doi:10.1016/j.fusengdes.2015.09.010 |
68 | WAN Y, LI J, WENG P .First engineering commissioning of EAST Tokamak[J].Plasma Science and Technology,2006,8(3):253-254. doi:10.1088/1009-0630/8/3/01 |
69 | WEI J, CHEN W G, WU W Y,et al .The superconducting magnets for EAST Tokamak[J].IEEE Transactions on Applied Superconductivity,2010,20(3):556-559. doi:10.1109/tasc.2010.2040030 |
70 | CHEN W, PAN Y, CHEN Z,et al .The design and the manufacturing process of the superconducting toroidal field magnet system for EAST device[J].Fusion Engineering and Design,2008,83(1):45-49. doi:10.1016/j.fusengdes.2007.05.042 |
71 | WU W, LI B .Design of the PF system for EAST (HT-7U) Tokamak[C]//2003 20th IEEE/NPSS Symposium on Fusion Engineering.San Diego,CA,USA:IEEE,2003:436-439. |
72 | WU S, TEAM E .An overview of the EAST project[J].Fusion Engineering and Design,2007,82(5/14):463-471. doi:10.1016/j.fusengdes.2007.03.012 |
73 | LEE G S, KIM J, HWANG S M,et al .The design of the KSTAR Tokamak[J].Fusion Engineering and Design,1999,46(2/4):405-411. doi:10.1016/s0920-3796(99)00032-0 |
74 | OH Y K, CHOI C H, SA J W,et al .KSTAR magnet structure design[J].IEEE Transactions on Appiled Superconductivity,2001,11(1):2066-2069. doi:10.1109/77.920262 |
75 | AHN H J, LEE Y W, KWON T H,et al .Engineering design status of the KSTAR TF coil structure[J].IEEE Transactions on Appiled Superconductivity,2002,12(1):492-495. doi:10.1109/tasc.2002.1018450 |
76 | LIM B S, LEE S I, KIM K M,et al .Fabrication of the KSTAR superconducting CICC[J].IEEE Transactions on Appiled Superconductivity,2002,12(1):591-594. doi:10.1109/tasc.2002.1018473 |
77 | LIM B S, LEE S I, CHOI J Y,et al .Development of CICC for KSTAR TF coil system[J].IEEE Transactions on Appiled Superconductivity,2003,13(2):1496-1499. doi:10.1109/tasc.2003.812752 |
78 | AHN H J, PARK H K, KIM Y O,et al .Review of the structural behavior of the KSTAR TF magnet[J].IEEE Transactions on Applied Superconductivity,2023,33(5):1-4. doi:10.1109/tasc.2023.3244154 |
79 | PARK H K, CHOI M J, HONG S H,et al .Overview of the KSTAR research progress and future plan toward ITER and K-DEMO[J].Nuclear Fusion,2019,59(11):112020. doi:10.1088/1741-4326/ab20e2 |
80 | 燕宇帆 .REBCO高温超导缆线及线圈的磁化特性研究[D].北京:清华大学,2022. |
YAN Y F .Study on the magnetization characteristics of REBCO high-temperature superconducting cables and coils[D].Beijing:Tsinghua University,2022. | |
81 | SORBOM B N, BALL J, PALMER T R,et al .ARC:a compact,high-field,fusion nuclear science facility and demonstration power plant with demountable magnets[J].Fusion Engineering and Design,2015,100:378-405. doi:10.1016/j.fusengdes.2015.07.008 |
82 | MANGIAROTTI F J,GOH J, TAKAYASU M,et al .Demountable toroidal field magnets for use in a compact modular fusion reactor[J].Journal of Physics:Conference Series,2014,507(3):032030. doi:10.1088/1742-6596/507/3/032030 |
83 | HARTWIG Z S, VIEIRA R F, DUNN D,et al .The SPARC toroidal field model coil program[J].IEEE Transactions on Applied Superconductivity,2023,34(2):1-16. |
84 | VIEIRA R F, ARSENAULT D, BARNETT R,et al .Design,fabrication,and assembly of the SPARC toroidal field model coil[J].IEEE Transactions on Applied Superconductivity,2024,34(2):1-15. |
85 | SYKES A, COSTLEY A E, WINDSOR C G,et al .Compact fusion energy based on the spherical Tokamak[J].Nuclear Fusion,2018,58(1):016039. doi:10.1088/1741-4326/aa8c8d |
86 | WHITE S .World-first ‘super’ magnets built by Tokamak energy for fusion power plant testing[EB/OL].(2023-02-06)[2024-06-10].. |
87 | 能量奇点 .建成!洪荒70托卡马克总装完工[EB/OL].(2024-03-01)[2024-06-20].. |
Singularity Energy .Completed! The assembly of the HH-70 Tokamak is finished[EB/OL].(2024-03-01)[2024-06-20].. | |
88 | 能量奇点 .洪荒70托卡马克成功放电!全球首台全高温超导磁约束聚变装置点亮等离子体![EB/OL].(2024-06-18)[2024-06-20].. doi:10.1088/2058-7058/21/06/12 |
Singularity Energy .HH-70 Tokamak successfully discharged! The world’s first fully high-temperature superconducting magnetic confinement fusion device lights up plasma![EB/OL].(2024-06-18)[2024-06-20].. doi:10.1088/2058-7058/21/06/12 | |
89 | 杜晨薇 .他在上海临港研究能源“洪荒之力”[EB/OL].(2024-05-20)[2024-06-20].. |
DU C W .Researching the “primordial power” of energy in Lingang,Shanghai[EB/OL].(2024-05-20)[2024-06-20].. | |
90 | 星环聚能 .星环聚能建设的第一个聚变实验装置成功运行[EB/OL].(2023-07-12)[2024-06-10].. |
Fusion Startorus .The first fusion experimental device built by Startorus Fusion successfully operates[EB/OL].(2023-07-12)[2024-06-10].. | |
91 | 星环聚能 .星环聚能简介[EB/OL].(2024-05-27)[2024-06-20].. |
Fusion Startorus .Introduction to Startorus Fusion[EB/OL].(2024-05-27)[2024-06-20].. | |
92 | 星环聚能 .星环聚能工程进展[EB/OL].(2023)[2024-06-10].. |
Fusion Startorus .Progress of Startorus Fusion project[EB/OL].(2023)[2024-06-10].. | |
93 | KOMORI A, YAMADA H, IMAGAWA S,et al .Goal and achievements of large helical device project[J].Fusion Science and Technology,2010,58(1):1-11. doi:10.13182/fst58-1 |
94 | YAMADA H, IMAGAWA S, TAKEIRI Y,et al .10 years of engineering and physics achievements by the large helical device project[J].Fusion Engineering and Design,2009,84(2-6):186-193. doi:10.1016/j.fusengdes.2009.01.068 |
95 | IIYOSHI A, KOMORI A, EJIRI A,et al .Overview of the large helical device project[J].Nuclear Fusion,1999,39(9Y):1245-1256. |
96 | CLERY D .The bizarre reactor that might save nuclear fusion[EB/OL].(2015-10-21)[2024-06-10].. doi:10.1126/science.aad4746 |
97 | ERCKMANN V, HARTFUSS H J, KICK M,et al .The W7-X project:scientific basis and technical realization[C]//1997 17th IEEE/NPSS Symposium Fusion Engineering.San Diego,CA,USA:IEEE,1997:40-48. doi:10.1109/fusion.1997.687694 |
98 | BYKOV V, SCHAUER F, EGOROV K,et al .Structural analysis of W7-X:overview[J].Fusion Engineering and Design,2009,84(2/6):215-219. doi:10.1016/j.fusengdes.2008.12.113 |
99 | GASPAROTTO M, ELIO F, HEINEMANN B,et al .The WENDELSTEIN 7-X mechanical structure support elements:design and tests[J].Fusion Engineering and Design,2005,74(1/4):161-165. doi:10.1016/j.fusengdes.2005.06.039 |
100 | SBORCHIA C, BALDZUHN J, FEIST J H,et al .Progress in the design,manufacture and testing of the W7-X superconducting magnets[J].IEEE Transactions on Applied Superconductivity,2006,16(2):848-851. doi:10.1109/tasc.2006.873345 |
101 | RISSE K, RUMMEL T, BOSCH H S,et al .The magnet system of Wendelstein 7-X stellarator in operation[J].Fusion Engineering and Design,2018,136:12-16. doi:10.1016/j.fusengdes.2017.12.008 |
102 | FUSION R .We decouple energy from fuels and emissions by building a super-star on earth[EB/OL].(2022-01-01)[2024-06-20].. |
103 | FUSION R .Renaissance fusion’s simplified stellarators[EB/OL].(2022-01-01)[2024-06-20].. |
104 | FUSION R .A clear and straightforward path towards the future[EB/OL].(2022-01-01)[2024-06-20].. |
105 | GREENWALD J .Princeton Plasma Physics Laboratory selected to collaborate with start-up that licenses its innovative technology[EB/OL].(2023-02-01)[2024-06-20].. |
106 | ENERGY T .Introducing Eos[EB/OL].(2024-01-01)[2024-06-20].. |
107 | ENERGY T .The path to commercial fusion[EB/OL].(2024-01-01)[2024-06-20].. |
108 | INSTITUTE W E .Type One Energy[EB/OL].(2023-01-01)[2024-07-25].. |
109 | ENERGY T O .The Game Changers[EB/OL].(2024-01-01)[2024-06-20].. |
110 | MAJID A .Type One Energy to build stellarator prototype with plans to commercialise fusion energy[EB/OL].(2024-03-08)[2024-06-20].. |
111 | ENERGY T O .Envisioning a Fusion Future[EB/OL].(2024)[2024-06-20].. |
112 | YAKOVLEV D, ANDERSON J, BROWN M,et al .Status and overview of the Wisconsin HTS axisymmetric mirror experiment[C]//2023 65th Annual Meeting of the APS Division of Plasma Physics.Denver,Colorado. 2023:11-54. |
113 | FOREST C .Overview of the Wisconsin HTS axisymmetric mirror and the role of ECH[C]//2022 21st joint workshop on electron cyclotron emission (ECE) and electron cyclotron resonance heating (ECRH).Saint-Paul-lez-Durance,France. 2022. |
114 | RADOVINSKY A, ZHUKOVSKY A, KELTON N,et al .Design of high field HTS coils for magnetic mirror[J].IEEE Transactions on Applied Superconductivity,2023,33(5):1-5. doi:10.1109/tasc.2023.3240377 |
115 | ENDRIZZI D, ANDERSON J K, BROWN M,et al .Physics basis for the Wisconsin HTS axisymmetric mirror (WHAM)[J].Journal of Plasma Physics,2023,89(5):975890501. doi:10.1017/s0022377823000806 |
116 | CLAESSENS M .ITER:The giant fusion reactor:bringing a sun to earth[M].Cham:Springer International Publishing,2023:199-210. doi:10.1007/978-3-031-37762-4_15 |
117 | HELION .Trenta[EB/OL].(2024-01-01)[2024-06-15].. |
118 | EMILIO M D P .Helion Energy Achieves Key Fusion Milestone[EB/OL].(2021-07-20)[2024-06-20].. |
119 | HELION .Trenta 2020 program results[EB/OL].(2021-12-17)[2024-06-20].. |
120 | HELION .Polaris[EB/OL].(2024-01-01)[2024-06-15].. |
121 | ZHANG X, QIN J .Mechanical effects:challenges for high-field superconducting magnets[J].National Science Review,2023,10(3):220. doi:10.1093/nsr/nwac220 |
122 | EKIN J .Experimental techniques for low-temperature measurements:cryostat design,material properties and superconductor critical-current testing[M].Oxford:Oxford University Press,2006. doi:10.1093/acprof:oso/9780198570547.001.0001 |
123 | GERBERSHAGEN A, CALZOLAIO C, MEER D,et al .The advantages and challenges of superconducting magnets in particle therapy[J].Superconductor Science and Technology,2016,29(8):083001. doi:10.1088/0953-2048/29/8/083001 |
124 | HARRISON R, BATEMAN R, BROWN J,et al .Development trends in high field magnet technology[J].IEEE Transactions on Applied Superconductivity,2008,18(2):540-543. doi:10.1109/tasc.2008.921883 |
125 | YAZDANI-ASRAMI M, ZHANG M, YUAN W .Challenges for developing high temperature superconducting ring magnets for rotating electric machine applications in future electric aircrafts[J].Journal of Magnetism and Magnetic Materials,2021,522:167543. doi:10.1016/j.jmmm.2020.167543 |
126 | STAUTNER W, XU M, LASKARIS E T,et al .The cryogenics of an MRI demonstrator based on HTS technology with minimum coolant inventory technology[J].IEEE Transactions on Applied Superconductivity,2009,19(3):2297-2300. doi:10.1109/tasc.2009.2019084 |
127 | LVOVSKY Y, STAUTNER E W, ZHANG T .Novel technologies and configurations of superconducting magnets for MRI[J].Superconductor Science and Technology,2013,26(9):093001. doi:10.1088/0953-2048/26/9/093001 |
128 | RADENBAUGH R .Refrigeration for superconductors[J].Proceedings of the IEEE,2004,92(10):1719-1734. doi:10.1109/jproc.2004.833678 |
129 | FLÜKIGER R .Overview of superconductivity and challenges in applications[J].Reviews of Accelerator Science and Technology,2012,5:1-23. doi:10.1142/9789814449953_0001 |
130 | PARIZH M, LVOVSKY Y, SUMPTION M .Conductors for commercial MRI magnets beyond NbTi:requirements and challenges[J].Superconductor Science and Technology,2016,30(1):014007. doi:10.1088/0953-2048/30/1/014007 |
131 | 赖凌峰 .高温超导线圈稳定性研究[D].北京:清华大学,2015. |
LAI L F .Study on the stability of high-temperature superconducting coils[D].Beijing:Tsinghua University,2015. | |
132 | NANATO N, YANAGISHITA M, NAKAMURA K .Quench detection of Bi-2223 HTS coil by partial active power detecting method[J].IEEE Transactions on Appiled Superconductivity,2001,11(1):2391-2393. doi:10.1109/77.920343 |
133 | SCHULTZ J H .Protection of superconducting magnets[J].IEEE Transactions on Appiled Superconductivity,2002,12(1):1390-1395. doi:10.1109/tasc.2002.1018662 |
134 | GOURLAY S A .Challenges and prospects for the large-scale application of superconductivity[J].IEEE Transactions on Appiled Superconductivity,2008,18(3):1671-1680. doi:10.1109/tasc.2008.2003983 |
135 | MITCHELL N, ZHENG J, VORPAHL C,et al .Superconductors for fusion:a roadmap[J].Superconductor Science Technology,2021,34(10):103001. doi:10.1088/1361-6668/ac0992 |
136 | MOLODYK A, SAMOILENKOV S, MARKELOV A,et al .Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion[J].Scientific Reports,2021,11(1):2084. doi:10.1038/s41598-021-81559-z |
137 | ENERGY D O .DOE announces new decadal fusion energy strategy[EB/OL].(2024-06-06)[2024-06-15].. |
138 | 聚变产业联盟 .联盟简介[EB/OL].(2023-01-01)[2024-05-23].. |
Fusion Industry Alliance .Alliance introduction [EB/OL].(2023-01-01)[2024-05-23].. | |
139 | 中核集团 .中核集团:打造“硬核”科技的更多可能[EB/OL].(2024-05-17)[2024-05-23].. |
China National Nuclear Corporation .CNNC:creating more possibilities for “hardcore” technology[EB/OL].(2024-05-17)[2024-05-23].. | |
140 | 新奥能源研究院 .新奥聚变路线、规划[EB/OL].(2017-01-01)[2024-05-23].. |
ENN Energy Research Institute .ENN fusion route and planning[EB/OL].(2017-01-01)[2024-05-23].. |
[1] | 周渝深, 潘垣, 李传, 饶波, 杨勇. 氘氘聚变中子源大口径强磁场磁压缩磁体的设计与优化[J]. 发电技术, 2024, 45(6): 1016-1022. |
[2] | 何诗英, 黄连生, 陈晓娇, 张秀青, 王泽京, 左英, 张稀楠. 核聚变高功率直流测试平台实时控制系统设计[J]. 发电技术, 2024, 45(6): 1023-1029. |
[3] | 徐浩睿, 王苏鑫, 李留江, 严植泳, 谭运飞. 聚变装置高温超导磁体系统电磁仿真方法研究[J]. 发电技术, 2024, 45(6): 1030-1038. |
[4] | 焦高峰, 郝清滨, 徐晓燕, 刘国庆, 刘学谦, 贾佳林, 张胜楠. 模具角度对核聚变用Bi-2212线材加工的影响[J]. 发电技术, 2024, 45(6): 1067-1073. |
[5] | 吴任博, 黄奕俊. 高比例可再生能源接入下含自愈性能的分布式配电网重构策略研究[J]. 发电技术, 2024, 45(5): 975-982. |
[6] | 谭玲玲, 孙鹏, 郭沛璇, 李元芳, 吉兴全, 张玉敏. 含氢储能的微电网低碳-经济协同优化配置[J]. 发电技术, 2024, 45(5): 983-994. |
[7] | 王耀函, 张扬帆, 赵庆旭, 王晓东, 梁恺, 王玙. 低电压穿越过程中风电机组载荷特性联合仿真研究[J]. 发电技术, 2024, 45(4): 705-715. |
[8] | 张崇, 李博, 李笑宇, 刘洪波, 刘永发. 基于虚拟同步机控制参数自适应调节的储能系统调频方法[J]. 发电技术, 2024, 45(4): 772-780. |
[9] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[10] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[11] | 郁海彬, 张煜晨, 刘扬洋, 陆增洁, 翁锦德. 碳交易机制下多主体虚拟电厂参与电力市场的优化调度竞标策略[J]. 发电技术, 2023, 44(5): 634-644. |
[12] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[13] | 杨锡勇, 张仰飞, 林纲, 张玉卓, 安允展, 杨昊天. 考虑需求响应的源-荷-储多时间尺度协同优化调度策略[J]. 发电技术, 2023, 44(2): 253-260. |
[14] | 肖洋, 李志强, 程林, 汤磊, 夏潮, 梁英, 宋锐, 王东阳, 李贺文. 西北电网集中式调相机AVC综合协调控制策略[J]. 发电技术, 2023, 44(2): 270-279. |
[15] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||