发电技术 ›› 2024, Vol. 45 ›› Issue (6): 995-1015.DOI: 10.12096/j.2096-4528.pgt.24119

• 可控核聚变及其发电技术 •    下一篇

磁约束可控核聚变装置的磁体系统综述

张家龙1,2, 宋彭1,2, 瞿体明1,2   

  1. 1.清华大学机械工程系,北京市 海淀区 100084
    2.清洁高效透平动力装备全国重点实验室(清华大学机械工程系),北京市 海淀区 100084
  • 收稿日期:2024-06-23 修回日期:2024-09-08 出版日期:2024-12-31 发布日期:2024-12-30
  • 通讯作者: 瞿体明
  • 作者简介:张家龙(2000),男,硕士研究生,研究方向为高温超导环向场磁体设计、计算以及关键制造技术,jialong-22@mails.tsinghua.edu.cn
    瞿体明(1981),男,博士,副教授,研究方向为极高场超导磁体、高温超导医疗装备磁体、高温超导电机、高温超导聚变磁体,本文通信作者,tmqu@mail.tsinghua.edu.cn
  • 基金资助:
    国家磁约束核聚变能发展研究专项(2022YFE03150103);国家电网公司科技项目(5500-202355837A-4-3-WL)

Overview of Magnetic Confinement Controlled Nuclear Fusion Reactors and Superconducting Magnet Technologies

Jialong ZHANG1,2, Peng SONG1,2, Timing QU1,2   

  1. 1.Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing 100084, China
    2.State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment (Department of Mechanical Engineering, Tsinghua University), Haidian District, Beijing 100084, China
  • Received:2024-06-23 Revised:2024-09-08 Published:2024-12-31 Online:2024-12-30
  • Contact: Timing QU
  • Supported by:
    National Magnetic Confinement Fusion Energy Development Research Project(2022YFE03150103);China State Grid Corporation Science and Technology Project under Grant(5500-202355837A-4-3-WL)

摘要:

目的 磁约束可控核聚变方案被视为未来解决全球能源问题的重要途径,作为磁约束聚变装置的核心元件,磁体在产生和维持等离子体稳定状态中起着关键作用。为此,对国内外典型磁约束可控聚变装置的磁体结构和规格进行了综述。 方法 回顾了聚变磁体从铜基到低温超导乃至高温超导的技术演变,系统归纳了各类典型聚变装置的磁体系统结构及其性能参数。同时,探讨了当前磁体研发过程中面临的技术挑战,并对未来发展进行了展望。 结论 磁体技术的进步对于提升聚变装置性能和加速实现聚变能源的商业化至关重要。随着高温超导材料的应用和新型磁体设计的不断优化,聚变能源的实用化正逐步向现实迈进。

关键词: 可控核聚变, 高温超导材料, 新能源, 聚变能源, 磁约束聚变, 托卡马克, 聚变磁体, 超导体

Abstract:

Objectives Magnetic confinement fusion is regarded as a critical solution to future global energy challenges. As the central component of magnetic confinement fusion devices, magnets play a crucial role in generating and sustaining plasma stability. A review of the magnetic system structures and specifications in representative magnetic confinement fusion devices worldwide was provided. Methods The technological evolution of fusion magnets was reviewed, from copper-based to low-temperature superconducting, and finally to high-temperature superconducting magnets. The structure and performance parameters of magnetic systems in various typical fusion devices were summarized systematically. Additionally, the technical challenges in magnet development were explored and an outlook on future development trend was offered. Conclusions Advances in magnet technology are vital for enhancing the performance of fusion devices and accelerating the commercialization of fusion energy. With the increasing application of high-temperature superconducting materials and continuous optimization of magnet designs, the practical realization of fusion energy is becoming increasingly feasible.

Key words: magnetic confinement controlled nuclear, high-temperature superconducting material, new energy, fusion energy resource, magnetic confinement fusion, Tokamak, fusion magnet, superconductor

中图分类号: