发电技术 ›› 2026, Vol. 47 ›› Issue (1): 157-167.DOI: 10.12096/j.2096-4528.pgt.260114

• 发电及环境保护 • 上一篇    

燃煤发电机组瞬态变负荷过程性能优化研究

陈禄1,2, 王波1,3, 王登亮1, 陈伟雄1, 刘继平4   

  1. 1.西安交通大学动力工程多相流国家重点实验室,陕西省 西安市 710049
    2.中能建数字科技集团有限公司,北京市 朝阳区 100000
    3.国能锦界能源有限责任公司,陕西省 榆林市 719319
    4.西安交通大学热流科学与工程教育部重点实验室,陕西省 西安市 710049
  • 收稿日期:2025-05-06 修回日期:2025-08-31 出版日期:2026-02-28 发布日期:2026-02-12
  • 通讯作者: 陈伟雄
  • 作者简介:陈禄(1982),男,工程硕士,正高级工程师,研究方向为火电机组灵活性改造、大型压缩空气储能技术,lchen4919@ceec.net.cn
    王波(1990),男,博士研究生,研究方向为燃煤发电热力系统瞬态过程灵活与高效性分析,1104977450@qq.com
    王登亮(1997),男,博士研究生,研究方向为火电厂热力系统仿真和节能优化与能效评价,wangdengliang0@163.com
    陈伟雄(1985),男,博士,教授,研究方向为火电厂热力系统仿真和节能优化与能效评价,本文通信作者,chenweixiong@mail.xjtu.edu.cn
    刘继平(1971),男,博士,教授,研究方向为热力系统节能和强化对流换热,liujp@mail.xjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB4100400)

Research on Performance Optimization of Transient Load Change Process in Coal-Fired Power Units

Lu CHEN1,2, Bo WANG1,3, Dengliang WANG1, Weixiong CHEN1, Jiping LIU4   

  1. 1.State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province, China
    2.China Energy Digital Technology Group Co. , Ltd. , Chaoyang District, Beijing 100000, China
    3.Guoneng Jinjie Energy Co. , Ltd. , Yulin 719319, Shaanxi Province, China
    4.Key Laboratory of Thermal-Fluid Science and Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province, China
  • Received:2025-05-06 Revised:2025-08-31 Published:2026-02-28 Online:2026-02-12
  • Contact: Weixiong CHEN
  • Supported by:
    National Key R&D Program of China(2022YFB4100400)

摘要:

目的 随着可再生能源发电装机量快速攀升,对燃煤发电机组运行灵活性要求愈发严苛。在此背景下,机组关键热力参数控制难度增大,瞬态变负荷时系统能效降低,为此,需开发多参数协同调控策略,以平衡变负荷速率与能效水平。 方法 基于GSE仿真平台,构建并验证了350 MW超临界燃煤机组动态模型,同时建立了包含锅炉内工质及管道金属蓄热的锅炉系统蓄热模型。在采用高压加热器抽汽节流的基础上,提出考虑锅炉系统内部蓄热变化规律的优化控制策略。 结果 在30%~50%热耗率验收(turbine heat acceptance,THA)工况升负荷过程中,高压加热器抽汽节流使机组最大升负荷速率从1.5%Pe/min (Pe为额定负荷)提至2.5%Pe/min,瞬态过程平均标准煤耗率达314.81 g⋅(kW⋅h)-1。而在满足电力标准前提下,通过优化控制策略实现了瞬态过程平均节煤量达0.67 g⋅(kW⋅h)-1结论 该优化控制策略既能显著提升机组升负荷速率,又可高效改善系统能效,为燃煤机组的高效、稳定运行提供了有力支撑。

关键词: 燃煤发电, 燃煤锅炉, 深度调峰, 低负荷, 超超临界机组, 能耗分析, 锅炉蓄热, 瞬态变负荷

Abstract:

Objectives With the rapid increase in the installed capacity of renewable energy generation, the requirements for the operational flexibility of coal-fired power units are becoming increasingly stringent. In this context, the control of key thermal parameters of the units becomes more challenging, and the system energy efficiency decreases during transient load change processes. Therefore, it is necessary to develop a multi-parameter coordinated control strategy to balance load change rates with energy efficiency levels. Methods Based on the GSE simulation platform, this study constructs and validates a dynamic model of a 350 MW supercritical coal-fired power unit. Additionally, a boiler system heat storage model incorporating the heat storage of the working fluid and pipeline metal is established. On the basis of adopting high-pressure heater extraction steam throttling, an optimized control strategy is proposed that takes into account the change patterns of internal heat storage within the boiler system. Results During the load increase from 30% to 50% turbine heat acceptance (THA), high-pressure heater extraction steam throttling increases the maximum load increase rate of the unit from 1.5%Pe/min (where Pe represents the rated load) to 2.5%Pe/min. However, the average standard coal consumption rate during the transient process reaches 314.81 g⋅(kW⋅h)-1. Under the premise of meeting the power standards, the optimized control strategy achieves an average coal savings of 0.67 g⋅(kW⋅h)-1 during the transient process. Conclusions The optimized control strategy can not only significantly increase the load increase rate but also efficiently improve the system energy efficiency, providing strong support for the efficient and stable operation of coal-fired power units.

Key words: coal-fired power generation, coal-fired boiler, deep peak shaving, low load, ultra-supercritical unit, energy consumption analysis, boiler heat storage, transient load change process

中图分类号: